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ABSTRACT 

 

MARIANNE E. REEVES: Profiling Metabolic Stress in Medieval Denmark: 

An Analysis of Internal and External Enamel Defects 

(Under the direction of Dale Hutchinson) 

 

The purpose of this study was to assess the prevalence of both types of enamel 

defects and to determining the timing of each, based on a population-specific model of 

permanent mandibular canine crown growth (after Simpson, 1999).  Analysis of n=410 

canine teeth from two Catholic friary cemeteries in medieval Denmark, the Black and Gray 

Friars, revealed that 96% of individuals had 1 or more surface defects.  In a subsample of 

n=63 thin-sectioned canines, only 25% showed evidence of 1 or more pathological striae.  

The population model revealed a non-linear pattern of canine crown growth, with growth 

slowing as the cervix was reached.  Duration of crown growth was found to be 50.6 months, 

shorter than in some previous estimates for modern humans.   The peak prevalence of 

microdefects occurred between 20 and 40 months, overlapping with surface defects, but also 

occurring in infancy prior to one year of age.  Overall, it was found that:  (1) PS did occur in 

infancy, expanding the stress profile window to include the earliest period of canine growth, 

(2) PS prevalence was unexpectedly lower and surface defects, higher, than in other 

archaeological populations, and (3) comparison of the distance functions (representing 

enamel growth geometry) were found to be significantly different from Simpson’s (1999) 

equation. While the primary contribution of the study was methodological in assessing 

hidden cuspal enamel for defects and using a population-specific model for timing those 

defects, the methods allow greater understanding about the stressors that affected childhood 
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growth in an extremely tumultuous time in Danish history.  Likely to have been critical in 

causing acute and chronic stress in Denmark are not only waves of infectious disease, but 

also the periodic famines throughout the medieval period.  Weaning stress (including 

weanling diarrhea) is also a likely candidate for growth disruption in the samples analyzed 

here, as weaning represents a significant dietary transition in infants and toddlers. 
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CHAPTER I 

 

INTRODUCTION 

DEFINING THE RESEARCH PROBLEM 

The purpose of this dissertation is to determine how metabolic stress impacted early 

childhood growth in a sample of skeletal individuals from medieval Denmark (ca. A.D. 1250-

1539). Studies of growth disruption provide a window onto the variation in the human 

response to metabolic stress and better insight into its etiologies. The consequence of the 

morbidity and mortality of medieval children went beyond loss to their immediate families; 

economic loss was felt as well, as children in towns left their households as early as age 10 

years for full-time labor as servants or apprentices (Orme, 2001; Hanawalt, 1993). Moreover, 

evidence from clinical and bioarcheological studies suggests that stress impacts not only the 

health and well-being during childhood, but it continues to negatively affect physiological 

resiliency into adulthood (Swärdstedt, 1966; Cook and Buikstra, 1979; Rudney, 1983; 

Goodman and Armelagos, 1988; Goodman, 1991; Simpson et al., 1990; Duray, 1996). 

Disease and nutritional stress are often implicated in the etiology of non-specific stress 

markers in human skeletal material (see Larsen, 1999). The medieval children in the town of 

Odense, DK lived in conditions that included a high residential population density, a 

rudimentary sewage disposal system that ran along town streets, shared water sources and 

limited access to hot water for cleaning and bathing, and a pre-antibiotic system of medical 

care – all of which contributed to the likelihood of infectious disease transmission. 

Nutritional stress was also a threat, in the form of the Great Famine and numerous smaller  
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famines in the 14
th

 century, which eventually led to a shift in diet to a greater dependence on 

meat and dairy products (Skaarup, 1978).  

The primary contribution of this research is methodological.  Specifically, “hidden” 

cuspal enamel is assessed for microdefects of enamel, along with the macrodefects visible 

from the enamel surface.  This is crucial because it illuminates a period in early childhood 

that is often left out of bioarchaeolgoical studies of dental stress.  This study also makes use 

of a population-specific model for enamel growth after Simpson (1999) to overcome issues 

error in enamel growth and disruption timing. But it does so in a way that relies on a small 

sample size for the model and minimizes destruction to dental samples.   

While these methodological issues are important in themselves, they are more 

significant for allowing accurate assessment of growth disruption in the Odense friary 

samples.  This biological data gives us valuable information about childhood health in 

Denmark in an extremely tumultuous time during Danish history with numerous infectious 

diseases, including the Black Death, multiple famines, farm abandonments, and the social 

and economic upheavals that resulted from all of these disasters.  

Teeth are particularly useful for profiling stress in skeletal material because, unlike 

bone, teeth do not remodel after growth is complete. Dental enamel permanently records 

crown growth in discrete increments and, by extension, serves as a biomarker for stressful 

events that interrupt growth. Among the most common indicators of growth disruption in 

enamel are external defects called hypoplasias and internal defects known as pathological 

striae of Retzius (PS), also known as accentuated striae (AS) or brown striae of Retzius 

(BSR). Hypoplasias area areas of thinner enamel, visible on the surface of the tooth as a pit 

or furrow; pathological striae are disruptions of enamel prism structure visible only in the 
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enamel internally. Quantifying the prevalence and timing of these two types of defects 

provides a gross measure of the level of non-specific metabolic stress experienced by 

children and, in turn, gives a proxy for the overall stress level of the population (Rose et al., 

1985; Goodman and Rose, 1990; Wright, 1997; Simpson, 1999). The research presented here 

tests suppositions that young medieval children: (1) experienced comparatively high levels of 

both acute and chronic metabolic stress resulting in the disruption of normal enamel growth, 

(2) that disruption occurred commonly in infancy, expanding the age range of susceptibility 

to stress to include the earliest years of childhood, and (3) that the pattern of enamel growth 

and pathological disruption is unique to the study sample and not indicative of a pan-human 

pattern of normal growth and stress response. If these hypotheses are supported, they will 

provide clearer insights into not only the etiology of the stressors affecting medieval children, 

but also into the range of variation in human crown growth and disruption. A more complete 

exposition of these hypotheses and presuppositions that support them follows. 

Hypothesis 1  

The first hypothesis was that children experienced comparatively high levels of 

enamel growth disruptions as a result of the metabolic stressors commensurate with an 

aggregate urban lifestyle.  

Presupposition 1 

The first presupposition was that the prevalence of enamel growth defects would be 

positively correlated with environmental stress factors, including nutritional and disease 

stress. The vast majority of disruptions to enamel growth that result in hypoplastic defects 

and pathological striae are non-specific stress indicators, meaning that the exact etiology of 

the stressor cannot be determined. However, both types of defects have been positively 

correlated with disease and nutritional stress in clinical and bioarchaeological studies. 
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Disease and undernutrition are often products of poor socioeconomic status in living groups, 

and a similar connection has been demonstrated in archaeological populations.  

Growth disturbance as measured by prevalence of pathological striae of Retzius has 

also been associated in skeletal samples with infectious disease. In a study of a skeletal series 

representing the Meroitic (100 B.C. – A.D. 300) and X-Group (A.D. 300-600) cultural 

horizons in Lower Nubia, Rudney (1983) found a negative correlation between age at death 

and PS prevalence, indicating that those who died young were more susceptible to early 

growth disturbance than those surviving to adulthood. Additionally, childhood health appears 

to have improved over time from the Meoritic to X-Group periods, perhaps due to changes in 

political structure, consumption of tetracyclines, or changes in irrigations techonology that 

affected the prevalence of helminthic infections. Wright (1990) hypothesized that the 

increase in prevalence of pathological striae and shallow enamel hypoplasias from the 

Postclassic to Historic period Mayan skeletal groups is related to an increase in parasitic 

pathogens in the Historic period.  

Like disease stress, hypoplasias and pathological striae have been positively 

correlated with malnutrition in clinical and skeletal studies. Goodman et al. (1991) argued 

that undernutrition is causally linked to enamel hypoplasia formation, based on their study 

defects in Aztec adolescents living in Mezonteopan, Mexico. The authors found linear 

enamel hypoplasia (LEH) prevalence in the range of 65% to 84% in children without 

nutritional supplementation. Infante (1974) found that between 19% and 39% of a sample of 

manlnourished Apache Indian children showed hypoplastic defects.  An increase in the 

prevalence of pathological striae has been linked to changes in diet that include the the shift 

from hunting and gathering diet to primarily agriculture foods (Molnar and Ward 1975; Rose 
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et al. 1979; Simpson 1999). Rose et al. (1978) predicted that stress, as indicated by 

pathological striae, infectious disease lesions, and lower-age-at death, would increase in 

prehistoric skeletal samples over time in proportion to increasing dependence on maize 

agriculture, higher residential population densities, increased trade, and greater complexity of 

social organization. The three skeletal samples from the prehistoric Dickson and Gibson 

Mounds, Illinois, representing the Middle Woodland, Late Woodland, and Mississippian time 

periods, showed pathological stria prevalences of 10.3%, 21.4%, and 40.0% respectively, in 

support of the authors hypotheses. Simpson (1999) found that stress as measured by 

microstructural defects increased from the prehistoric to the mission period in northern 

Florida, in prevalences of 48% (summed prehistoric), 54% (early contact), and 83% (mission 

samples).  

Presupposition 2 

The second presupposition was that the distribution of hypoplasias and pathological 

striae would often be different, indicating that the defects have different etiologies and 

represent chronic and acute stress, respectively. Studies by Condon (1981), Rose et al. 

(1985), Wright (1990), and Simpson (1999) found that the distribution of enamel hypoplasias 

and pathological striae differed significantly in skeletal samples and, therefore, likely 

represent different stress etiologies. Rose (1977) examined the relationship between 

hypoplasias and pathological striae in permanent canines from the prehistoric Dickson 

Mounds site in Illinois. He found that only one hypoplasia in 26 defects was associated with 

a pathological stria, an extremely low co-occurrence. Conversely, in a study of a prehistoric 

Native American sample from the Libben Site, Ohio, Condon (1981) found that 74% of 

pathological striae in mandibular canines co-occurred with hypoplasias. Because co-

occurrence was not absolute, Condon concluded that hypoplasias represent chronic, long-
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term stress while pathological striae were indicative of shorter, more acute periods of stress. 

Wright (1990) found similar results, with hypoplasias and Wilson bands co-occurring at a 

rate of 23% (and Wilson bands co-occuring with hypoplasias at a rate of 51%) in Mayan 

samples from Lamanai, Belize. Wright notes that morphological differences in the defects 

suggest different etiologies, although Rose et al. (1985) concluded that the relationship 

between the defect types is not always clear. In terms of structure, pathological striae are 

marked by a brief disruption in prism structure lasting several days; while hypoplasias are 

produced by a slowing of ameloblast secretion, resulting in thinner enamel with normal 

imbricational striae converging in the defect (although see Hillson and Bond, 1997). Condon 

and Rose (1992), Goodman and Rose (1992) and Goodman and Armelagos (1985a,b) argue 

that that differences in susceptibility to dental defects occurs both within and between tooth 

types. Goodman and Armelagos (1985a) suggest that biological gradients in susceptibility to 

disruptions of ameloblasts exist between tooth types. Specifically the expression of 

hypoplastic defects may be affected by enamel prism length and direction, which differs 

within and between teeth. Similarly, Witzel and authors (2008) argue for a threshold model of 

increasing impairment to secretory ameloblasts in response to stress in a medieval German 

skeletal assemblage, and they espouse the acute versus chronic model of microdefect stress 

response. And Thomas (2003) found that accentuated striae nearly always preceded enamel 

hypoplasia in dental sample from medieval Tirup. She related this sequence to an initial 

stress event that compromised (or killed) ameloblasts, leading to a longer-term stress event as 

reflected by enamel hypoplasia. Most recently, Guatelli-Steinberg and authors (2012) have 

analyzed variation in enamel hypoplasia expression in great apes in terms of lateral enamel 

formation time and the angles of striae with the enamel surface. They concluded that striae 
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angles do influence hypoplasia expression in great apes and humans (acute angles resulting 

in fewer identifiable surface defects). 

Presupposition 3 

The third presupposition was that the conditions of aggregation concomitant with 

urbanization would be associated with an increase in stress prevalence; these conditions were 

present in medieval Odense. Larsen and colleagues have clearly demonstrated that an 

increase in aggregation associated with the adoption of farming and increased consumption 

of processed foods and refined carbohydrates, along with decreased physical activity, results 

in a decrease in health status. This evidence is intimately connected to evidence for increase 

in skeletal pathologies resulting from infectious diseases (Hutchinson and Larsen, 1990; 

Larsen, 1997).  

Aggregate town life is an extreme on the continuum of population aggregation.
1
 The 

relationship between increased population size and distribution and a decrease in overall 

health has been demonstrated in archaeological populations from Europe, and North 

America. Urban environments exacerbate certain types of disease proliferation and 

transmission (Betsinger, 2007; Roberts, 2000). Archaeological remnants of Odense’s walls 

and structures have helped to establish that the town was walled, separating it from the 

surrounding countryside. Residents lived in houses in close proximity to one another, often 

also in close proximity to with animals and with an omnipresent risk of water contamination. 

Perhaps even more informative is the historical data on periodic famine, and infectious 

disease like the Black Plague, which arrived in Denmark in A.D. 1348 and was succeeded by 

                                                 
1
 Towns in medieval Scandinavia are estimated to have residential populations equal to or greater than 

1000, and possibly between 5000 and 10,000 individuals (Helle, 1993). 
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numerous smaller outbreaks. Other infectious disease such as tuberculosis, smallpox (Hays, 

1998), and leprosy (Anderson, 2000) were also prevalent during the time period. 

Making a dietary argument for a medieval town is more difficult because towns acted 

as markets for local farmers as well as for the importation of foreign goods (e.g., spices and 

fruits). While the Danish burghers’ diet was grain-based, a variety of foods was available to 

those who had access to them. The diets of infants and young children were certainly milk 

and grain-based and are detailed in Chapter 5. 

Hypothesis 2 

The second hypothesis was that acute stress episodes resulting in growth disruption 

occurred in early infancy. This hypothesis is based on identifying pathological striae in 

"hidden" cuspal enamel. Evidence supporting this hypothesis would expand the age range of 

susceptibility to stress to include the earliest years of childhood.  

Presupposition 1 

The first presupposition of Hypothesis 2 was that, when hidden enamel is included in 

the sample and scored for defects, the timing of defects can include the first year. Several 

bioarchaeological studies have taken into account the enamel hidden by successive layers of 

enamel during cusp development, but not within the context of an incremental, non-linear 

crown growth model (see Thomas, 2003). Goodman and Song (1999), Wright (1997), and 

Suga (1997) account for hidden layers of cuspal enamel by adding several months to their 

hypoplasia chronologies to account for the initial period of hidden enamel development. 

Wright (1997) estimated that hidden (and unscorable) enamel accounted for a period of 1 

year in Mayan dental samples, while Goodman and Song (1999) noted a period of 10 months 

for hidden enamel in mandibular canines. Goodman and Song (1999) note that the effect of 

the hidden enamel correction was to increase the mean age at LEH formation from 3 months 
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to approximately 4.5 months. It is important to note that the growth model used in these 

studies is based on equal divisions of crown height corresponding to chronological ages, 

inferring that crown growth is a linear process.  

A tooth crown develops from the cuspal end first, and growth proceeds towards the 

cervical end. The first-forming, cuspal enamel is buried in the deepest enamel layers; thus, 

defects that occur in cuspal enamel are representative of metabolic stress that occurred in that 

early period of development (Hillson, 1996). Many studies of dental defects disregard cuspal 

enamel because seeing the hidden increments requires thin-sectioning (a destructive process). 

Hypoplasias, as surface defects, will only represent stress that occurred from the time that 

striae of Retzius (SOR) reach the surface (as perikymata) during crown extension. The 

earliest stress during growth will not be recorded on the enamel surface, necessitating 

analysis of the internal structure of enamel surrounding the dentin horn. Using hypoplasias 

and pathological striae together covers the entire time of growth subject to disruption – 

hypoplasias alone leave out the period of “hidden” cuspal enamel. The nature of tooth 

geometry dictates that the first layers of enamel laid down in the cusp are covered over 

completely by successive layers of enamel. Further down on the crown, the layers are not 

hidden; they reach the surface as countable growth markers (Hillson, 1996; Hillson and 

Bond, 1997).  

Cook (1981) found that accentuated striae and prism disruption occur most 

commonly in infants between the ages of 6 and 24 months, a time period during which 

children may be undergoing a major dietary transition in the form of weaning.   Rose and 

authors (1978) correlated accentuated striae with weaning stress in prehistoric human 

populations.  And weaning stress has also been linked to accentuated striae in juvenile 
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baboons (Dirks et al., 2010; Dirks et al., 2002).  Humphrey and authors (2008) analyzed 

strontium/calcium ratios in tooth crowns of wild-caught baboons and predicted that the ratios 

would change as juveniles experienced dietary transitions both at birth and at weaning.  

Changes in strontium/calcium ratios during enamel development were found to coincide with 

observational data on weaning timing (Humphrey et al., 2008).  Moreover, Dirks and authors 

(2010) found that accentuated striae occurred in juvenile baboons at 6 months in one case, 

related to a reduction in sucking frequency, and 11 months in another, related to a cessation 

of nursing.  Accentuated striae in this sample were determined to be indicators of weaning 

stress. Microdefects were found to occur most commonly in children aged 2-3.5 years in 

Wright's (1990) Mayan skeletal samples; however, this study does not take hidden cuspal 

enamel into account. In contrast, Simpson (1999) found that around 50% of microdefects 

occurred before the age of 18 months, in the cuspal portion of the crown.  

While the number of studies documenting pathological striae in permanent cuspal 

enamel is relatively few, those documenting the presence of the neonatal line, a heavily 

accentuated stria in deciduous enamel, are numerous (Scour, 1936; Weber and Eisenmann, 

1971; Whittaker and Richards, 1978). This line is often visible in the cuspal enamel of 

deciduous premolars and molars and permanent first molars, supporting the idea that even in 

the areas of highest decussation (i.e., cuspal enamel), it is possible to detect accentuated 

striae.  

Presupposition 2 

The second presupposition is that infancy is a metabolically vulnerable period of 

childhood. This argument hinges on the immaturity of the immune system at birth. The 

immaturity of the immune system and lack of prior exposure to pathogens leave infants 

vulnerable to infectious disease (including viral, bacterial, and fungal infections). Natural, or 
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innate, immunity is (provided to) infants via two mechanisms. First, the body’s natural 

barriers and lymphoid organs (which are still developing/ physiologically immature) provide 

immunity at birth, and second, colostrum, the first, anti-body rich milk secreted after 

pregnancy provides nursing infants and toddlers a boost in immunity during a critical 

immunoincompetent period. Acquired, or adaptive, immunity develops as a child becomes 

exposed to foreign microorganisms. It is arguable from a metabolic standpoint that infants 

are more vulnerable to infectious disease processes than slightly older children because, as a 

child ages, he/she gains experiential, acquired immunity (Roitt and Delves, 2001). This 

argument challenges the idea that the weaning period is the most significant time of stress for 

young children. 

Hypothesis 3 

The third hypothesis was that the pattern of enamel growth and disruption would be 

unique to the study groups/population. This hypothesis relies on the creation of an 

endogenous model for canine crown growth and comparison of that model to growth in other 

human populations. The most useful comparisons are between studies using the same 

histological and analytical methods, in this case with Simpson’s (1999) analysis of the 

prehistoric and historic contact period samples from northern Florida, USA, which relied on 

counts of striae of Retzius along the dentino-enamel junction (DEJ) to establish overall 

crown formation duration, measurements of the external and internal locations along the 

lengths of respresentative striae, and the generation of regression equations to convert 

hypoplasia locations into internal locations along the DEJ (for comparison in distribution and 

timing).  

Many bioarchaeological studies rely on the standards of Massler et al. (1941) for age-

at-formation and crown completion and / or divide crown development into equal time zones 
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(Swardstedt 1966, Goodman and Song 1999). The division of crown height into equal 

developmental zones assumes that crown growth is linear, despite that Massler and 

colleagues demonstrated the opposite (Massler et al., 1941) The problem among studies with 

more reliable crown development chronologies is that there is still a significant amount of 

variation in crown completion times (Simpson 1999; Liversidge, 2000; Reid and Dean, 

2006).  Because the degree of variation in the duration of enamel growth among different 

human populations is largely unknown, imposing one population’s growth schedule on 

another is potentially erroneous.  

Presupposition 1 

The first presupposition of Hypothesis 3 was that a comparison of published 

schedules of permanent crown growth would show a significant amount of variation - 

evidence for variation between populations. Permanent tooth crown development schedules 

for modern humans vary significantly (Reid and Dean, 2006; Dean 2000). The variation in 

development schedules translates into variation among defect chronologies because these are 

all based on some kind of developmental schedule. Goodman and Song (1999) identified 

sources for variation in linear enamel hypoplasia chronologies, including hypoplasia 

measurement error, variation in developmental timing, crown height variation, use of 

corrections for buried cuspal enamel and changes in enamel growth rates, and choice and 

interpretation of developmental schedule (see also Rose et al. 1995; Goodman and Rose 

1990; Skinner and Goodman 1992; Simpson and Kunos 1998). Simpson (1999) and Ritzman 

and authors (2008) have pointed out the problems of more traditional, non-destructive 

anthropological studies that divide the labial surface of crowns into segments of equal 

breadth and then rely on the Massler et al. (1941) schedule to calculate age-at-formation of 

the defects. These studies fundamentally misinterpret crown growth as a linear process, 
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resulting in schedules that are incongruent with the growth process they are modeling 

(Hillson and Bond 1998; Simpson 1999). Simpson (1999) demonstrated the non-linear nature 

of crown growth – the density of striae of Retzius along the DEJ increases towards the 

cervix, indicating a slowing of growth as the crown nears completion.  

Radiological studies of crown development such as Nolla (1960) are non-destructive 

but have other problems such as the accuracy of the radiographic image. Additionally studies 

using these standards have reported very different canine development chronologies, despite 

being based on similar populations (Simpson 1999, Simpson and Kunos, Beynon et al., 

1998). Population-based variation in tooth calcification stages has been documented by in 

research relying on radiographic methods. Owsley and Jantz (1983) applied the 

developmental standards of Moorees et al. (1963) to juveniles in the Native American 

Arikara collection and concluded that the Arikara showed advanced calcification as 

compared to modern American Caucasians. Harris and McKee (1990) found that southern 

African-Americans attained specific calcification stages earlier than both southern European-

Americans and northern European-Americans (Canadians). The authors suggested that these 

variations in rate of calcification were due to environmental and genetic differences between 

the groups. Watt and Lunt (1999) also concluded that the medieval Scots in their study 

showed faster dental development of the first permanent molar than in modern Caucasians. 

All of these studies clearly establish variation in enamel calcification at specific stages of 

development, but they do not address crown growth during the initial deposition of enamel 

matrix. This is largely due to the use of radiographs to determine developmental stage – and 

the inability of radiographs to detect the original immature, organic matrix deposited as the 

crown grows and takes shape. Huda and Bowman (1995) also noted that changes in the rate 
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of enamel formation in different parts of the crown are not accounted for in radiographic 

studies, which lead to flawed development chronologies. 

Histological studies of crown development based on incremental growth structures 

have a number of advantages. They account for the non-linear nature of crown growth and 

the timing of hidden cuspal enamel, and they produce ages-at-formation of both hypoplasia 

and pathological striae in terms of days. Although this form of analysis is destructive, a 

method for molding crowns before thin-sectioning preserves their surface dimensions and 

features for future analysis. The amount of variation in modern humans even among 

histological studies employing similar methods is unknown, despite that enamel growth 

appears to be under greater genetic control than other bodily tissues. The use of small or 

pathological clinical samples in older histological studies (e.g. Massler et al. 1941 and 

Schour 1936), which have been hugely influential in biological estimates of defect timing in 

the past is questionable, and these standards may not be applicable to many populations.  

Presupposition 2 

The second presupposition was that the two friary cemetery samples chosen for the 

study would not show significant differences in enamel growth, defect prevalence, or defect 

timing. The choice of two samples from the same urban setting allows comparison of growth 

and disruption in samples related in terms of space, time, and likely, population genetics. The 

subtlety of the differences in the friaries themselves, even in extension to the individuals 

buried in their churchyards, does not warrant the assumption that one group was healthier 

than the other. Those interred at both cemeteries include a small number of royalty, nobility, 

and wealthy patrons, but it is unclear why certain individuals and groups chose one Odense 

friary over the other for burial. What is certain is that each cemetery contained a combination 

of men, women, and children representing social statuses that ranged from indigence to 



 

15 

royalty (the majority were probably in-between). Distinct differences between cemeteries in 

the patterns of normal growth and growth disruption produced by stress are not likely to be 

detected, given both the gross measure of the environmental factors that impact growth, the 

mix of individuals in each cemetery, and the complexity of the factors that impacted 

decisions for burial place. 

It is important to note that burials in both cemeteries have been attributed to the post-

A.D. 1250 medieval period and have not been dated any more specifically. Time within the 

cemeteries is difficult to determine, due to lack of grave goods, continual use of the cemetery 

throughout the medieval period, and the fact that only half of the sites, and only parts of the 

cemeteries, have been excavated due to existing buildings. No time-correlated patterns in 

burial position have been found (Becher, pers comm; see also Moller-Christensen, 1958). 

While the spatial patterning of burials may be somewhat useful in that older burials tend to 

be closer to church, it should be noted that the churchyard has moved in the past and that it 

extends past excavated areas. 

SIGNIFICANCE OF THE RESEARCH PROBLEM 

Many previous studies that have profiled childhood health based on dental defect 

prevalence and timing have relied solely on enamel hypoplasias, without reference to 

microdefects. Several bioarchaeological studies have utilized both hypoplasias and 

pathological striae to truly integrate data on chronic and acute events into descriptions of 

human health in the past (for example, Rose et al. 1985, Wright 1997, Simpson 1999; 

Thomas 2003, Antoine 2000). The value of this kind of research is that it produces 

hypoplasia chronologies with greater accuracy – important in archaeology because it 

provides a wider picture of stress in the past and, from a practical standpoint, it can 

potentially reduce the number of teeth needed for sectioning. Inclusion of pathological striae 
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in the stress profile provides a window onto stress in infancy that is often not available 

through traditional osteological analysis. The remains of infants and young juveniles 

frequently succumb to destructive taphonomic processes, essentially disappearing in a 

skeletal assemblage (Cook and Buikstra, 1979, Saunders et al. 1999). Teeth remain most 

frequently, providing access to the entire period of crown growth. This dissertation uses a 

model for timing both types of defects to not only gain further information about childhood 

stress levels in urban settings, but specifically stress in medieval Scandinavia (for which little 

is known in comparison to medieval Britain and continental Europe). Furthermore, the 

development of an endogenous canine crown development schedule and its comparison to 

schedules for other populations provides insight into the range of variation of growth in 

modern humans.  Moreover, the methods allow more accurate insight into the types and 

timing of stressors in children in medieval Odense.  Historical documents point to the types 

of stressors to which children were exposed, but relatively little empirical data exists on 

childhood health in medieval Denmark.  The methods in this study allow important 

contributions to be made to a biological picture of growth disruption in Danish children.  

SOLVING THE RESEARCH PROBLEM 

Determining the prevalence and timing of metabolic disturbances involved a variety 

of methods, including identifying, counting, and measuring the locations of enamel defects 

microscopically. To most accurately determine the timing of these episodes, an endogenous 

enamel growth model for the mandibular canine was created, obviating the need to apply 

exogenous standards (with specific assumptions, see Chapter 3). The model generates an 

estimate of the time to total crown formation, which is converted into a chronological age of 

the individual at crown completion. The relationship between the distributions through time 

of hypoplasias and pathological striae was analyzed to assess the roles of chronic and acute 
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stress in childhood growth. Finally, total time to crown development in the study sample was 

compared to schedules produced from modern clinical and pathological samples, as well as 

archaeological samples from northern Florida, USA to determine the amount of variation 

between crown growth in the Danish sample and that of other samples. 

Testing the research hypotheses requires comparison of data from the study sample to 

data from other populations. Because the methods used in this study parallel those employed 

by Simpson (1999) in his analysis of dental defects and crown growth in prehistoric and 

historic northern Florida, those data were chosen for comparison. Temporal comparisons 

within the friary cemetery samples are not possible because discrete stratigraphies of the sites 

were not identified in archaeologically – continued use of the sites over hundreds of years 

precludes any stratigraphic identification more specific than general period (e.g., “medieval” 

versus “renaissance”). 

 



 

 

 

 

 

 

 

CHAPTER II 

 

REVIEW OF THE LITERATURE  

NORMAL ENAMEL GROWTH 

Amelogenesis: Matrix deposition and maturation 

In order to understand the etiology of enamel defects, a brief review of amelogenesis, 

the process of enamel formation, is provided. Amelogenesis is often described as a two-step 

process occuring within a tooth germ. It involves: (1) secretion of a primary organic matrix 

by cells called ameloblasts and (2) maturation of that matrix, during which ameloblasts 

remove the organic components and deposit secondary mineral mainly comprised of 

hydroxyapatite (Boyde, 1976; Hillson, 1996; Eisenmann, 1994). (Because the maturation 

phase of amelogenesis is itself a two-step process, some authors describe amelogenesis as 

occuring in three stages, secretion of the primary matrix, matrix removal, and secondary 

mineral formation (Schroeder, 1991). The process of enamel secretion begins at the occlusal 

tip of a tooth germ and proceeds toward the cervix of the tooth (Boyde, 1976; Hillson, 1996), 

following the path of general crown growth. Enamel growth occurs as both thickness and 

apposition, from the DEJ to the enamel surface, and elongation, the occluso-cervical spread 

of enamel. Clinical research has shown that tooth crowns elongate in a non-linear fashion, so 

that enamel is deposited at a variable rate in different parts of the crown (Sciulli, 1992; 

Shellis, 1984). 

Ameloblasts are cells that possess organelles that enable them to synthesize and 

secrete enamel proteins (ca. 90% amelogenin and 10% non-amelogenin proteins) that form  
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an organic matrix capable of accepting hydroxyapatite crystals during maturation. Each 

ameloblast is rich with mitochondria, rough endoplasmic reticulum (ER), and golgi 

“profiles.” The assembly and secretory pathways involve the rough ER, transport vesicles, 

the Golgi “apparatus,” and secretory vesicles (Ten Cate 1994). 

As internal epithelial cells begin to differentiate into ameloblasts, the cells elongate 

and become polarized. The nucleus shifts proximally away from the DEJ, and the majority of 

organelles cluster in the cell opposite the nucleus. Ameloblasts are closely aligned to one 

another, attached by junctional complexes at their proximal and distal ends of the cells. 

Filaments project from the complexes into the cytoplasm of adjacent ameloblasts, allowing 

junctional complexes to regulate what passes between ameloblasts to enter or exit forming 

enamel. Enamel protein is synthesized in the rough endoplasmic reticulum and transferred to 

the Golgi complex, where it is packaged into secretory granules. The granules move to the 

cell’s distal end and are released against the dentin mantle/predentin. This initial enamel is 

mineralized almost immediately with inorganic ions from the dental follicle. The enamel is 

described as “structureless” because its hydroxyapatite crystals are deposited randomly, 

interdigitating with crystals from the dentin. 

Following the deposition of this intial thin layer of structureless enamel, the 

ameloblasts move away from the dentin, and Tomes processes containing secretory granules 

form on each ameloblast’s secretory end. Enamel protein is secreted from two distinct sites of 

the process, one at the cell body’s periphery and the other on the surface of the process. Both 

secrete enamel matrix; however the orientation of the crystallites from each site is different. 

This differential crystallite organization gives the enamel structure. The majority of enamel 
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in a tooth crown is structured – only the first-formed and last-formed layers (when Tome’s 

process pits are resorbed) exhibit crystals deposited randomly. 

Once enamel has formed its full thickness in the secretory stage, the role of 

ameloblasts changes to maturing the enamel. This cyclical process involves removal of water 

and organic content, when the ameloblasts take on a “smooth-ended” appearance, and 

deposition of additional inorganic material, when the ameloblasts take on a “ruffle-ended” 

appearance. 

Microstructure of normal enamel 

Mature enamel is 96% inorganic by weight (Simmelink, 1994; Moss-Salentijn and 

Hendricks-Klyvert, 1990), rendering it the hardest structure in the body. Histologically, the 

structure of mature enamel is that of a mineralized epithelium and not a connective tissue (no 

fibrous structural elements are present in mature enamel) (Simmelink, 1994; Schroeder, 

1991). The structures of mature enamel include: enamel rods, striae of Retzius, perikymata, 

and enamel cross-striations. 

Rods, or prisms, are the fundamental structure of enamel. They are elongated 

cylindrical aggregates of hydroxyapatite crystals. The so-called “keyhole appearance” of a 

rod in cross-section results from the orientation of crystals parallel to the rod’s long axis at its 

center and from those flaring laterally towards its periphery. The structural integrity of 

enamel results from the undulation of the rods as they extend from the dento-enamel junction 

to the outer one-third of the enamel’s thickness (Hillson 1996). 

Striae of Retzius (brown striae, growth lines, or Retzius lines) are a series of 

incremental lines (with optical and physical properties) which follow the pattern of crown 

growth layering during amelogenesis (Hillson, 1996; Risnes, 1990) . In coronal sections, 

striae appear similar to the concentric growth rings of a tree (Simmelink, 1994). In 
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longitudinal sections they appear as dark lines running from the dentinoenamel junction to 

the occlusal surface, maintaining the shape of the developing enamel front (Schroeder, 1991; 

Goodman and Rose, 1990). They also form concentric arcs at the cuspal and incisal edges in 

longitudinal sections (Swancar, 1986), revealing that some enamel is forever hidden by 

subsequent developing layers. Exactly what constitutes a stria of Retzius is still not well 

understood. Investigation into the structure and morphology of striae has shown that they 

cross-cut enamel rods (Hillson, 1996) and likely result from either: (1) a change in direction 

of the rods (Swancar 1986; Wilson and Schroff, 1970) or (2) a deficiency in mineralization of 

the rods (Moss-Salentijn and Hendricks-Klyvert, 1990; Swancar, 1986). One stria of Retzius 

is thought to represent a period of rest between two active phases of enamel secretion 

(Schroeder, 1991). The resting period in rod formation appears to occur every 7 days on 

average so that the area of enamel between each stria represents one week’s formation time 

(Swancar, 1986). A more detailed model of the incremental growth of enamel is provided by 

Dean (1987). Dean describes the circaseptan (weekly) secretion of enamel as a product of the 

interaction of a 24 hour and 27 hour rhythm, resulting in a seven to eight day interference 

beat. Other important homologous rhythms in the body may provide clues to the etiology of 

striae of Retzius, including the frequency with which kidney transplants are rejected on a 

circaseptan rhythm and the almost weekly periosteal rhythms in human osteosarcomas 

(Dean, 1987). 

Perikymata are the surface manifestations on unworn tooth crowns of the striae of 

Retzius. As such, they are used to calculate crown formation duration, which is used, in turn, 

to document growth and maturation in humans (Mann et al., 1991). Perhaps the most 

significant problem with using perikymata counts to predict tooth crown formation times is 
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that cross striations, the segments of prisms in the interval between Retzius lines, can vary in 

number (periodicity) from six to twelve (Reid and Ferrell, 2006; Thomas, 2003; FitzGerald 

1998). An average of seven cross striations between striae has been assumed by many 

researchers to indicate that each cross striation represents a 24 hour period, or one day 

(Hillson, 1996; Risnes, 1986; Mann et al., 1991). By extension, striae of Retzius occur, on 

average, at weekly intervals. It is important to note that these intervals for formation are 

averages. Mann et al. (1991) point out that perikymata do not regularly record seven days of 

growth and that calculations of crown formation time relying on this regular periodicity may 

be erroneous (see Fitzgerald, 1998). Despite these problems of periodicity, counts of striae of 

Retzius have one very clear advantage over perikymata counts: striae at the cuspal/incisal 

tips of tooth crowns are visible (and countable) histologically, whereas cuspal perikymata 

formed at the onset of calcification remain hidden, buried under successive layers of enamel 

(Mann et al., 1991).  

Counts of enamel cross-striations have been used by a number of researchers to 

estimate crown formation times (Dean and Beynon, 1991; Dean et al., 1993). There is ample 

evidence to support a prism periodicity rate of 24 hours for cross striations (Risnes, 1986; 

Smith 2006; Antoine et al., 2009), Bromage et al. (1997) measured cross-striations in human 

molar enamel and confirmed a weekly periodicity between adjacent striae of Retzius. Dean 

and Beynon (1991) have shown that cross-striation counts between adjacent striae are 

consistent within a tooth and dentition but vary between individuals. Lacruz and authors 

(2008) found that periodicities in the enamel of various hominin taxa varied by location in 

the enamel (eg. cuspal versus lateral), and other researchers have found the modern human 
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periodicties range from 6 to 12 days, with a mode of 8 or 9 days (Guatelli-Steinberg et al., 

2005; Reid and Ferrell, 2006) 

EVIDENCE OF GROWTH DISRUPTION: ENAMEL DEFECTS 

Hypoplasias 

The surface of a normal tooth crown is smooth and white (Hillson, 1996). Defects of 

enamel alter this appearance. Non-genetic pit, groove, and transverse linear defects on the 

enamel surface are classified as enamel hypoplasia, a deficiency of enamel thickness, 

indicating that the defect occurred during the secretion phase of amelogenesis (Hillson, 1996; 

Goodman and Rose, 1990). Hypoplastic lesions form in the secretory (first) phase of 

amelogenesis, as ameloblasts secrete calcium salts and proteins called amelogenins and 

enamelins (Suckling, 1989). The rate of secretion may be directly affected by the duration 

and severity of the stressor. Condon and Rose (1982) and Wright (1990) suggest that chronic 

metabolic stress slows the rate of secretion, producing hypoplastic defects. Acute (shorter-

term) metabolic stress affects total ameloblast secretion, resulting in accentuated or 

pathological striae. It is important to note that extreme systemic disturbances can result in the 

death of ameloblasts, which would result in an absence of enamel in all teeth developing at 

the time of the disturbance. Disturbances that occur in the maturation, or second, phase of 

amelogenesis may result in hypocalcified enamel, an issue of enamel quality as opposed to 

quantity (Suckling, 1989). 

The factors altering ameloblast secretion is unknown. Simpson (1999) suggested that 

cellular dehydration (occurring in individuals with acute conditions such as diarrheal diseases 

and high fevers) could alter secretory patterns. If dehydration negatively impacts protein 

biosynthesis or transport, or crystal formation in the cell, then it may be a part of the 

mechanism in the formation of enamel defects. 
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Enamel defects found on permanent teeth reflect generalized childhood metabolic 

stress because the crowns of the permanent dentition form after birth, during infancy and 

childhood. Childhood health is linked directly to population demography; and, because 

juvenile skeletal remains are often underrepresented in archaeological populations, enamel 

hypoplasia in adult remains provides a unique source of information on childhood well-being 

(Wright, 1997).  

Hypoplasia is described as a general stress indicator because its causes are multiple 

and varied (Larsen, 1999). Anthropological studies on the prevalence of defects in modern 

and archaeological populations all over the world assume that most defects result from 

general (non-genetic) systemic stress (Boyde,1970) and have identified the major stressors 

as: (1) nutritional (Goodman and Rose, 1991) , resulting from famine (Zhou, 1995), a 

reorientation of diet (Lambert, 1993; Larsen and Hutchinson, 1992; Hutchinson and Larsen, 

1990, 1988 ; Simpson et al., 1990), and weaning stress (Lanphear, 1990; May et al., 1993; 

Goodman et al., 1987; Goodman et al., 1984; although see Blakey et al., 1994) and (2) 

environmental, resulting from disease stress (Goodman et al., 1980; Larsen and Hutchinson, 

1992; May et al., 1993; Simpson et al., 1990). 

The methods for measuring the developmental timing of enamel hypoplasias vary 

widely among researchers (Skinner and Goodman, 1992). Many measure from the occlusal 

margin or the center of the defect to the dento-enamel junction and then convert this 

measurement into an age at occurrence by using already published enamelization schedules, 

noted by Swärdstedt (1966) to differ by study and to be a potentially significant source of 

error. Recent studies have also addressed quantifying the duration of stress episodes using the 

breadth or area of a lesion (Ensor and Irish, 1995; Larsen and Hutchinson, 1992; Simpson et 
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al., 1990), although a better method for estimating duration of an episode may be to count the 

perikymata contained within a lesion (Guatelli-Steinberg, 2000).  Also of interest is 

differential susceptibility within and between tooth classes (Wright, 1997; Condon and Rose, 

1992; Goodman and Armelagos, 1985) and the amount of lateral versus cuspal enamel in the 

tooth type.  Traditional anthropological means of estimating the age of occurrence of enamel 

surface defects have failed to take into account variable enamel deposition; instead, it has 

been assumed that tooth crowns can be divided into equal portions for comparing frequencies 

of hypoplasia in these portions of the crown (see Goodman and Rose, 1990). Goodman and 

Armelagos (1985) demonstrated this intra-tooth variation in susceptibility to defects by 

dividing the tooth crowns into thirds and documented the prevalence of hypoplasia in each 

third. The middle third of tooth crowns was found to be most affected, followed by the 

cervical and then the cuspal thirds. Problems arise in comparing defect prevalence in equal 

thirds of a tooth given that the rate of crown growth, specifically elongation, is non-linear 

(Sciulli, 1992; Shellis, 1984) and that the “equal thirds” divisions have no actual 

developmental correlates. 

A number of conditions have been implicated in the etiology of enamel hypoplasia in 

living populations. Pindborg (1982) summarized studies of enamel defects associated with 

specific causes, including: genetic and chromosomal conditions such as Amelogensis 

imperfecta, Ehlers'-Danlos' syndrome and Trisomy 21; congenital conditions such as heart 

disease, facial hypoplasia, and facial hypertrophy; congenital metabolic disorders such as 

galactosaemia, phenylketonuria, alkaptonuria, erythropoietic porphyria, and hyperoxaluria; 

neonatal disturbances, including premature birth, hypocalcemia (see Nikiforuk and Fraser 

1981), hemolytic anemia, and congenital allergies; viral infectious diseases such as rubella 
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and bacterial infections such as syphilis and tetanus; neurological disorders; endocrinopathies 

such as hypoparathyroidism and diabetes mellitus; nutritional deficiencies inlcuding vitamin, 

mineral, and protein deficiencies; kidney disorders; enteropathies including non-specific 

diarrhea, coeliac disease, and lymphangiectasia; liver diseases; intoxications with 

tetracycline, thalidomide, vitamin D, and Pica-related substances; local mechanical trauma, 

burns, and irradiation; and local infections such as periapical osteitis, neonatal maxillitis, and 

odontodysplasia. 

In modern developed nations, enamel hypoplasia affects only about 10% of the 

population (3-15% according to Pindborg, 1970). The clinical implications of hypoplastic 

lesions are important to note because hypoplastic lesions are ideal sites for attack by carious 

bacteria. The result is a penetrating carious lesion, possible tooth loss, and often chronic 

periapical abscesses (Infante and Gillespie 1977).  

A high prevalence of enamel hypoplasia in living populations has been shown to be 

clearly positively correlated with poor socioeconomic status. Enwonu (1973) found a clear 

correlation between hypoplasia prevalence in deciduous teeth and poor socioeconomic status. 

Nigerian children aged 0-7 years from a high socioeconomic group showed no defects, while 

malnourished children from families living in poor village conditions showed defect 

prevalences between 6-21%. Retarded body height and weight were also documented in 

these children, revealing growth disturbances in other tissues of the body. Further evidence 

for the role of undernutrition in hypoplasia etiology is provided by Goodman et al.’s (1991) 

study of linear enamel hypoplasia (LEH) prevalence in 84 adolescents from the rural Aztec 

Indian community of Mezonteopan, Mexico. Half of the children in the study had received 

nutritional supplements to their regular diets since birth, while the other half were not 
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supplemented. Those children receiving the supplements showed LEH prevalence in the 

range of 28.6-50.4% (of individuals affected), versus the non-supplemented grow with 

prevalence in the range of 64.7-84.1%. Both groups showed a peak age at formation of ca. 2-

2.5 years, but the non-supplemented group had a wider range of ages at occurrence. The 

authors concluded that undernutrition during enamel formation is causally linked to linear 

hypoplasia formation (Goodman et al. 1991). 

In a study of enamel hypoplasia in village children from Solis, Mexico, Goodman et 

al. (1992) found that children with defects had lower body weight and shorter stature than 

those without defects. The synergistic relationship between diet, disease, and environment is 

difficult to tease apart in determining defect causation. Malnutrition and infection were 

problems common to populations from Polynesia, Southeast Aisa, Central America, and 

Africa where linear enamel hypoplasia was prevalent in deciduous teeth at rates of 14-85% 

(Infante and Gillespie 1977). In the United States, Infante (1974) found that between 19 and 

39% of a sample of 96 Apache children showed hypoplastic defects. All of these children 

were living in poverty or near-poverty and were malnourished, as determined by poor quality 

protein intakes and low energy, calcium, and vitamin intakes. However, it is important to 

remember that the defects formed during enamel development. The conditions present during 

the time of the study are not relevant to defect etiology. Enamel does provide a permanent 

record of developmental stress because, unlike disturbances in bone from which children can 

recover, e.g., catch-up growth, enamel does not remodel. No analogous system of recovery of 

normal structure exists in enamel, so defects persist throughout life. 

Infections are another large-category etiology of enamel hypoplasia. Sweeney et al. 

(1969) argued that neonatal infections in Guatemalan children between the ages of 2 and 3 
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years accounted for the prevalence of linear enamel hypoplasia found in the deciduous 

incisors of 42.5% of the sample. The most prevalent infections were conjunctivitis, thrush, 

and diarrhea, and they occurred often in the first month postpartum (Sweeney et al. 1969). 

Parasitic infections are also responsible for enamel growth disruption. Suckling et al. (1986) 

found that inducing parasitism in sheep damaged the function of ameloblasts, the cells that 

produce enamel. The sheep suffered severe diarrhea, weight loss, and weakness, and 

postmortem examination histological sections of growing incisors revealed that hypoplastic 

severity (missing enamel) was related to the serverity of disturbance to ameloblastic activity. 

While, malnutrition and unsanitary living conditions are correlative to enamel 

hypoplasia prevalence in all of these cases, neither is directly implicated in defect etiology. 

The synergistic relationship between undernutrition and infection is implicated by Infante 

and Gillespie's (1977) of rural Guatemalan children with linear enamel hypoplasia. The study 

revealed that children aged 2-7 years with hypoplastic lesions in their anterior teeth had 

caries prevalences in their posterior teeth two to four times greater than children without 

dental defects. The authors concluded that the mechanisms that underlie hypoplasia 

formation, undernutrition and infection, also may predispose the posterior teeth to excessive 

carious attack (Infante and Gillespie 1977), conditions that are more prevalent in 

economically underdeveloped countries.  

Bioarchaeological studies of enamel defects have, in general, reflected the findings 

from studies on living peoples in terms of correlation with under- or malnutrition and disease 

prevalence. Historic skeletal samples, especially in comparison to earlier groups, experienced 

a higher prevalence of hypoplastics defects, as diets changed to include more processed 

agricultural foods, as population densities increased in town settlements, and as infectious 
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disease prevalence increased (see Larsen, 1999 for review of the changes that accompany 

agricultural subsistence shifts). And demographic data have showing that individuals with 

defects have higher mean frailty than non-affected individuals from the same population 

(Boldsen, 2007; see also Thomas, 2003). 

Pathological striae of retzius (Wilson bands) 

Growth disruption is also recorded by microdefects known as pathological or 

accentuated striae of Retzius. Pathological striae result from a sudden change in the direction 

of the enamel rods, associated with atypical rod morphology (Hillson, 1996; although see 

FitzGerald and Saunders, 2005), and they appear as thick, brown bands. An accentuated stria 

of Retzius is often classified as pathological, although there is no inter-observer agreement 

regarding when normal morphology becomes pathological. Attempts have been made at 

classifying striae of Retzius based on morphology (Risnes, 1990; Rose, 1977; Wilson and 

Schroff, 1970); however, no standardized classification exists.  

Pathological striae of Retzius are commonly observed as histological correlates of 

enamel surface defects like hypoplasia, but a temporal association between microdefects and 

macrodefects does not always occur. And these microdefects are unlike enamel hypoplasias 

in that they can be seen and quantified throughout the enamel, from cusp to tip. The lack of 

association in many cases suggests that macrodefects and microdefects have different 

etiologies. Acute, non-chronic stress may result in pathological striae, while chronic stress 

may be responsible for hypoplastic lesions on the tooth's surface (Goodman and Armelagos, 

1990; Wright, 1990). Pathological striae, like enamel hypoplasia (see Swärdstedt, 1966) have 

also been shown to correlate negatively with socioeconomic status (Mifsud and Marks, 

1998). 
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The most well-known accentuated stria of Retzius is the neonatal line. The neonatal 

line is a stria that often appears darker and wider that the striae surrounding it, due to 

environmental changes that occur with birth. It differentiates pre- from post-natal enamel 

(Schour, 1936; Weber and Eisenmann, 1971; Antoine et al., 2009). Noren (1983) documented 

the location and appearance of the neonatal line in both normal weight and low birth-weight 

Swedish infants and found that more enamel disturbances, including hypoplasia, were 

prevalent in the low birthweight group.  

Accentuated striae have been positively correlated with chronic and repetitive acute 

disease episodes in infants. In a study of 19 forensic cases, Teivens et al. (1996) found that 

Swedish infants with an antemortem history of internal organ inflammation and infections 

had a higher prevelance of pathological striae than infants with no recorded antemortem 

health problems. Thomas (2003) correlated accentuated striae with a higher risk of death 

after age 7 in a medieval Danish skeletal assemblage from Tirup. The data on positive 

correlations between skeletal indicators of nutritional and disease stress and higher 

prevalence of pathological striae is less abundant, but nonetheless convincing (Rose et al., 

1981; Rose et al., 1985). Additionally, pathological striae are, not surprisingly, positively 

correlated with low socioeconomic status. In a study of microscopic enamel defects in a 

Middle Woodland Native American skeletal sample, Cook (1981) found that defects were 

more prevalent in individuals buried in low-status graves (as determined by burial location, 

body preparation, grave furnishings, as well as differential arthritis patterning, trace element 

composition of the ribs, and stature). Cook (1981) also noted that age at death strongly 

affects the apparent frequency of defects in the sample, and that stress experienced before age 

three years had a negative impact on later survival. It is useful to note that sex differences in 
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pathological striae prevalence appear to be negligible (Simpson 1999, Cook 1981, etc.); 

however, one might expect differences by sex to occur in populations with extreme status 

differences in males and females (or extreme dichotomies in division of labor). 

 

 



 

 

 

 

 

 

 

CHAPTER III 

 

METHODS 

SUBJECTS AND SITE HISTORY 

Site background 

Two medieval cemetery sites, the Black Friars Square site and the Gray Friars Place 

site, were chosen because they comprise large samples of medieval skeletal individuals. 

Approximately 979 skeletal individuals were originally identified in the cemetery at the 

Black Friars site and 591, from the Gray Friars cemetery. These cemetery sites were also 

intriguing because they theoretically represent a good cross-section of individuals (in terms 

of socioeconomic class) living in and around the town. Both skeletal collections were 

analyzed for basic demographic data on age and sex as well as suitability for dental sampling. 

Black Friars Square Cemetery (Sortebrødre Torv Kirkegård) 

The Black Friars monastery in Odense, one of 19 mendicant monasteries established 

in Denmark during the Middle Ages, flourished from ca. A.D. 1239 to 1539. The friary was 

located in the northeastern corner of the medieval town (now the central part of Odense). 

Previous excavations of the friary site have revealed the foundations of the friary church, 

known as St. Peter’s, and connected cloisters that served as the kitchen and housing areas for 

the friars themselves. Archaeological excavations in the 1970s also revealed that the friary 

also maintained a water mill and millhouse, a garden, and multiple sewer lines. All of the 

friary buildings were destroyed shortly after the Lutheran Reformation in Denmark, although 

the cemetery continued to be used through the 17
th

 century. The Black Friars Square 
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cemetery was first excavated in 1978 by a team of archaeologists from Møntergården, 

Odense’s city museum, prior to the installation of a modern sewer line at the site (Urth 1978). 

Excavations continued into 1979 and 1981. 

A total of 661 graves were excavated in 1981 (comprising about one-half of the total 

cemetery), most of which could not be dated to any specific time within the 300 year 

medieval timespan. Well-preserved skeletal remains from the graves were removed and 

housed with the Antropologiske Database Odense Universitet (ADBOU) in Odense.
2
 The 

graves surround the St. Peter’s Church foundation and extend to the southwest towards 

modern Overstræde and Claus Bergsgade (Figure 1). The density and disturbance of burials, 

often one intruding on another, made assigning dates to them by stratigraphic layer difficult.
3
 

Moreover, medieval Christian burials rarely contain grave goods that might be used to 

establish dates or even social status (exceptions are the few graves that contained rosary 

beads, coins, and seals – and aristorcratic ceremonial grave goods in only two cases). The 

remnants of wooden coffins and nails were found in many burial features; although many 

appear also to have been deliberate coffin-less burials, these could not always be 

distinguished from coffin burials with wood that did not survive. Both wooden coffin (most 

common at SBT) and coffin-less burial types were common in the medieval period and give 

                                                 
2
 It should be noted that not all skeletal material was collected from the site – anatomists involved in 

the excavation efforts left poorly preserved skeletal material at the site in favor of whole or well-preserved 

material. 

3
 Dendrochronology was not used to date the remains of wooden coffins because coffin wood was 

often recycled from prior structures. Archaeologists used the stratigraphic relationships of graves intruding on 

one another to try to date groups of graves – still, this method yielded no clear results. A final attempt to date 

the burials was made by examining body position within each grave. According to medieval Catholic burial 

customs, nearly all bodies were laid out in a supine position with the head to the west and feet to the east (such 

that on Judgement Day, the dead could rise from their graves and look eastwards). This pattern was found in all 

but a handful of atypical burials (Arentoft 1991). Attempts were made to date the graves by burial position, 

specifically arm position, but no consistent pattern was found (Becher 1999).  
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no indication of class or social status within the cemetery. A small number (14) of a third 

burial type, stone-walled graves, provide a slightly narrower timeframe for relative dating, as 

walled graves were most common in the 13
th

 century (Kieffer-Olsen 1993). Of these graves, 

3 were located inside of the church, and 11 were near the church. The proximity of these 

burials to the church may be more indicative of social status. For example, the 3 walled 

burials were located in the floor of the church itself. These burials were highly different from 

typical churchyard graves because they contained ceremonial graves swords. Such elaborate, 

expensive grave goods are highly suggestive of aristocratic burial; indeed, burial inside of 

medieval churches was often reserved exclusively for the aristocracy and high level clerics. 

Burial outside of, but in close proximity to, the church is also common indicator of higher 

social status in medieval European cemeteries; however, there is no direct evidence of this 

pattern in the Black Friars cemetery.
4
  

Social status was nearly impossible to determine within the Black Friars cemetery. 

The cemetery was likely used to inter people from all social strata during the Middle Ages 

(although written sources indicate that the cemetery was used to bury primarily the indigent 

after the Reformation ca. 1540). The primary tasks of the friars were to preach to those living 

in the town and to care for the dead – including indigents whom the friars had taken in as 

well as middle and upper class townspeople who paid to be buried in the friary churchyard. 

Men, women, and children were interred in the cemetery, although no clear pattern of sexual 

division of burials was discernable (Becher 1999).
5
 More men than women were interred in 

                                                 
4
That pattern is based on the idea that rainwater dripping from the eaves of the church would fall onto 

the graves below and thereby “bless” the dead over and over again (Kieffer-Olsen 1993).  

5
 The women were once thought by scholars to be wives or mistresses of the friars, but it is more likely 

that they were the relatives of lay-friars or townspeople who had contracted to be buried in the cemetery 

(Kieffer-Olsen 1993).  
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the cemetery (see Becher 1999), attributable first and foremost to the 300 year existence of 

the friary as a male institution (and concomitant burial of the friars in the cemetery). It is also 

possible that a portion of the cemetery that has been excavated was reserved for men, in light 

of the fact that the sample comes from only ca. one-half of the total cemetery. Becher (1999) 

contends that the presence of people of both sexes and all ages is a testament to the ability of 

the friary to intertwine itself with the lives (and deaths) of the population of Odense.  

Gray Friars Place Cemetery (Gråbrødre Plads Kirkegård) 

The Gray Friars Place friary in Odense was a medieval Franciscan friary site dating 

from ca. 1280 to the Reformation in A.D. 1539. The site is located in the central portion of 

modern Odense. In the Middle Ages, the friary stood at the northern edge of the town, with 

open landscape to its northern and western sides. The first excavations of the site, directed by 

Odense’s Town Museum (Odenses Bysmuseem, Møntergården), took place in 1982, when 

the local municipality wished to renew the area by planting new trees on the site. The test 

excavations yielded not only skeletal material from medieval burials, but also the foundations 

of the porch of the friary church (Arentoft 1991). 

Archaeological excavations associated with the renewal project continued in 1990, 

when renewal plans had expanded to include a piece of “vandkunst,” or water art, in addition 

to the trees. The areas to be excavated were divided into 7 squares, labeled A through G on 

site maps (Figure 2). These areas chosen for excavation were the areas chosen by the 

municipality for replanting and building of the water installation and its accompanying water 

line. Burials were found only in squares A through D, all completely inside the boundaries of 

the medieval cemetery with the exception of B.
6
 Archaeologists recorded 418 graves in 1990. 

                                                 
6
 Square A, chosen for the water art installation, comprised a 24m

2
 excavated area; a significant 

portion of the area was disturbed and contained several destroyed graves. Square B was comprised of 23m
2
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Few grave goods were recovered (as expected in a medieval Catholic cemetery); although, a 

few graves contained coins or medieval bone or amber beads, presumably from rosaries. The 

burials themselves gave no indication of the social status of the interred. Coffin type was not 

useful, either, in determining social status within the cemetery. Excavations revealed that 212 

of the burial features showed traces of wooden coffins (either traces of nails or the wood 

itself). Burial density was very high in all of the squares, such that coffin-type even in the 

most well-preserved features was indeterminable. In a few cases, archaeologists identified 

coffins as either trapezoid-shaped or as bar/slatted form (Arentoft 1991).  

While provisional determinations of age and sex were made in the field, no 

systematic demographic analysis of the skeletal material was made until 1999. Additionally, 

anatomists from the Institute of Cytology and Anatomy at Odense University rejected (and 

disposed of) some of the skeletal material because it was too meager in quantity or too poorly 

preserved to be useful in teaching. Loose bones (not associated with a particular grave), with 

the exception of crania, were discarded (Arentoft 1991).  

In A.D. 1279, King Erik Clipping (r.1259-1286), the original patron of the Gray Friars 

in Odense, granted the friars the plot of land in Odense on which to build a friary. The king’s 

intent was to use the new friary church for the interment of his family (his daughters were 

eventually interred inside the church). A second episode of royal patronage came at the end 

of the medieval period, when King Hans (r.1482 -1513) and his family chose the friary 

church as their final resting place. Han’s queen, Queen Christine, endowed the friary church 

with altar furniture that survives today in St. Knud’s, Odense’s cathedral church. The 

                                                                                                                                                       
excavated area that revealed remnants of the friary’s porter’s lodge as well as cemetery burials in the most 

southerly part of the square. Square C, circa 48m
2
, contained part of the foundation and buttress for the church 

chancel, as well as churchyard graves. Square D contained an excavated area of only 56m
2 

due to the presence 

of a live power line. This square only contained remnants of the churchyard cemetery. 
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majority of the people served by the friary, however, were not royalty, but were either 

townspeople who made arrangements to be buried in the churchyard or were indigents who 

died in the care of the friars (Arentoft 1991). 

After the Reformation, the friary itself was converted to a hospital and was used as 

such until 1866. The friary church, however, lost its status as a parish church in 1618, and the 

church was eventually demolished between 1817 and 1819. The last burials in the churchyard 

are provisionally dated to ca. 1800 (Arentoft 1991). Today, a small portion of the original 

cloister walkway and cemetery yard still exists; however, most of the original site is covered 

by a new church and a retirement home and associated grounds.  

Preliminary osteological analysis 

Age determination 

The ages of the skeletal individuals excavated from the Black Friars and Gray Friars 

cemeteries were derived using a variety of techniques. Skeletal ages were determined using 

ADBOU’s own written descriptions of the stages of pubic and auricular age estimation in 

conjunction with classic osteological methods of pelvic age estimation from Todd’s (1920) 

and the Suchey-Brooks (Brooks and Suchey 1990) descriptions of pubic symphysis stages 

and Lovejoy and author’s (1985) descriptions of iliac auricular surface age estimation. 

Children and young adults’ ages were determined using Ubelaker’s (1978) deciduous and 

permanent tooth development and eruption stages, as well as age at epiphyseal closure in 

cranial elements (Meindl and Lovejoy 1985, Mann et al. 1987) and postcranial elements 

(White 1990) and postcranial element lengths (Fazekas and Kosa 1978, Ubelaker 1978). 

Many of these methods were conveniently reprinted and redrawn in Milner (1994).  
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Sex determination 

The biological sex of the skeletal individuals was determined for individuals 

displaying secondary sexual characteristics in the skeleton (young adults usually over age 15 

years and adults). The method used for sex determination of adult pelves was based on 

several features of the pubis, including the ventral arc, subpubic concavity, and medial aspect 

of the ischiopublic ramus (Phenice1969), as well as the angle formed by the greater sciatic 

notch and the depth of the preauricular sulcus. Helpful drawings of all of these characteristics 

by P. Walker appear in Milner (1994). The presence of dorsal pubic pitting, often an indicator 

of pregnancy and parturition, was used to designate remains as female. Cranial characteristics 

were also assessed for sex association, with the help of graded drawings by P. Walker and 

descriptions of robusticity of the nuchal crest, mastoid process, glabella, supra-orbital margin 

(all graded on a 1-5 scale), and mandibular robusticity of the mental eminence and gonial 

angle (Milner 1994).  

Selection of dental sample 

Mandibular canine. A sample of 410 canines (n = 234 Black Friars, n = 176 Gray 

Friars) were chosen to be evaluated for enamel hypoplasias (one per individual) from the 

inventory of individuals who retained at least one fully mineralized, intact permanent 

mandibular canine. From these canines, a subsample of n = 33 teeth (each representing one 

individual) from the Black Friars collection and n = 30 from the Gray Friars collection were 

chosen randomly to be sectioned for the histological defects analysis.  

A second subsample of canines were also chosen from the original sample to derive a 

population-based model of enamel growth. Six crowns were originally chosen, although 

three were ultimately used (representing individuals aged 11.5 to 27 years) for the model 

based on visibility of SOR throughout the crown. Determining a standard for the timing of 
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growth in different parts of the adult canine crown (e.g. cusp versus cervix), as well as the 

total time to crown completion, required that the crowns used for the standard be as complete 

as possible. Therefore, the sample used to create the endogenous growth standard was chosen 

with the following criteria: (1) each crown was fully mineralized, (2) there was little to no 

enamel attrition, (3) there was no damage to cervical enamel along the DEJ (which serves as 

the basepoint for measurements), and (4) SOR were visible throughout the crown. 

RESEARCH DESIGN 

Procedures 

Dental sample preparation 

The crowns of whole teeth were rinsed in water and lightly swabbed with an ethanol 

solution to remove adhering dirt and debris. This cleaning procedure was performed before 

analyzing whole crowns for external defects as well as to prepare a subsample of the teeth for 

molding and sectioning. 

Molding 

Molds were made of each crown in the samples to be thin-sectioned in order to 

preserve the crowns’ exterior features and dimensions.  

Negative molds. Each crown was cleaned with 95% ethanol prior to the molding 

process. Negative molds of the crowns were produced with Provil® novo (Light Body, Fast 

Set), a silicone impression material used to make high quality surface replicas. The base and 

catalyst were mixed together in a 1:1 volume ratio and applied to each crown with a wooden 

stir stick. The material cold-cured within 5 minutes, and the crowns were freed from the 

mold negatives by gently pulling on the roots and moving them back and forth, out of 

position. Good molds retained all of the detail of the crown surface and were left for several 

hours before filling with resin, to ensure a completely dry set.  
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Resin. Araldite epoxy resin was chosen as the medium, as it produces excellent detail 

for SEM studies. The resin consisted of three chemicals, a hardener, resin, and accelerator in 

the following ratios: 75g DDSA (hardener): 100g Araldite 502 (resin): 1.9g DMP-30 

(accelerator). The DDSA and Araldite 502 were combined under a hood vent and placed on a 

magnetic stirring platform for 45 minutes, or until the mixture appeared smooth. The 

accelerator was added to this, producing a darkened orange color, and mixed for another 15 

minutes. The final product was poured into negative molds of the crowns and used for 

embedding the teeth themselves.  

Positive molds. Each negative mold was filled with resin under a hood vent. A slim 

applicator stick was inserted into each mold to release air bubbles that might have become 

trapped as the resin was added. The molds were transferred to a 60° C oven to cure for 24 

hours. The curing molds were checked every hour for the first 3-4 hours for air bubbles. The 

final product, a positive resin cast of each crown, was revealed by simply tearing away the 

negative mold. The molds were stored as a permanent record of the external appearance and 

dimensions of the crowns destroyed by sectioning, and they and may be used for future 

scanning electron microscopic analysis of perikymata and enamel hypoplasias. 

Embedding 

 Once positive molds had been produced of all the crowns chosen for sectioning, the 

canines themselves were embedded and prepared for thin sectioning. Each tooth was cleaned 

prior to embedding in successive 15-minute baths of 70%, 95%, and 100% ethanol and 

placed into a Peel-A-Way® 1”x1” disposable plastic tissue embedding mold. A label 

identifying each specimen’s provenience was added to each mold as well. Enough resin to 

cover the crown and cervical portion of the root of each tooth was poured into the molds. The 
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molds were placed into a 60ºC oven for at least 24 hours, or until the resin hardened 

completely. The hardened blocks were removed from the molds and readied for sectioning. 

Sectioning 

Thick sections. To produce a midline thin section in the labio-lingual plane, each 

whole block was placed in an irregular saw chuck, mounted onto the saw arm of a Buehler 

Isomet sectioning saw, and oriented to be cut slightly off-midline. Thick sectioning resulted 

in two thick sections, each containing half of the canine. Each thick section was rinsed, 

bathed in 95% ethanol, and gently swabbed with a .1M hydrochloric acid solution to 

decalcify the enamel and expose the rods more clearly. 

Thin sections. Sections approximately 250-300µm thick were cut from one of the 

thick section blocks for each individual. For each section, the saw micrometer was turned ca. 

12 increments, moving the saw blade approximately 300µm from the face of the slide. The 

position of the blade was recalibrated for each section, to account for differences in adhesive 

thickness. All thin sections were rinsed in water and acid-etched in .1M hydrochloric acid 

solution for 4 seconds to reveal rod structure. It should be noted that the sections were not 

polished by machine. Sections were permanently mounted using a clear epoxy resin and 

temporarily coverslipped
7
 using a 30% ethanol solution or oil for examination under a light 

microscope. All sectioning was performed by the author in the Simpson Laboratory in the 

Department of Anatomy at Case Western Reserve University School of Medicine and in the 

Wright Laboratory in the Department of Pediatric Dentistry at the University of North 

Carolina School of Dentistry.  

                                                 
7
 A few slides were coverslipped permanently using Permamount. 
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ANALYSIS 

Identifying defects 

Hypoplasias 

All of the sampled canine crowns (n = 234 from Black Friars site; n = 176 from Gray 

Friars site) were evaluated for surface defects at a magnification of 10x on a dissecting light 

microscope. Specific criteria for defining surface defects (hypoplasias) were used after 

Hillson and Bond (1997) and included: (1) furrow-form defects that interrupt the normal 

spacing of perikymata and show occlusal and cervical walls bordering the defect floor, (2) 

pit-form defects in bands or clusters, representing clusters of ameloblasts that have ceased 

enamel formation, and (3) exposed-plane form defects, with a wholly exposed growth line 

plane representing a cessation of enamel production. 

The breadth of each hypoplasia as well as the distance from its cuspal edge to the cervix of 

the root was measured in millimeters with the ocular micrometer.  

Pathological Striae of Retzius 

PS were only scored in the canine subsample chosen for thin sectioning (n = 33 from 

Black Friars site, n = 30 from Gray Friars site). PS were positively identified based on at 

least two of the following three criteria: (1) stria appears darker and wider than surrounding 

striae, extending clearly from the DEJ to the enamel surface, (2) the stria exhibits rod 

disorganization on examination at 1000x magnification, and (3) the stria has a corresponding 

darkened stria in the lingual enamel. All sections were examined and scored for PS on a 

transmitted light microscope at progressive magnifications from 40x to 1000x. Suspected PS 

were examined by a second observer for verification in a number of cases.  Agreed upon 

striae were denoted as pathological; however, disagreement on PS identification resulted in 

those striae not being recorded as pathological.  A small number of thick sections with 
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suspected PS were also examined with Scanning Electron Microscope – only a few cases of 

disrupted enamel were verified with SEM.  Stria meeting the criteria for pathology were 

noted, and photographs of the sections at 40x were scanned and examined digitally with 

ImageTool 3.0 biomedical imaging software (available as shareware from the University of 

Texas at San Antonio). The absolute locations of PS were measured in millimeters from the 

DEJ to the cervical enamel. 

Determining the timing of defects 

Endogenous growth standard 

The length of the DEJ was measured digitally in photographs of thin sections of the 

unworn mandibular canine crowns using ImageTool 3.0 and also MetaMorph miscropic 

image analysis software. 

Each DEJ was divided into 10% increments along its length using the regions 

function in MetaMorph (Figure 3), and counts of the intersecting striae of Retzius were taken 

within each increment (Reid and Dean, 2000). Counts were taken the entire length of the DEJ 

– covering both imbricational and cuspal enamel – to determine total enamel formation and 

to document the location of any cuspal pathological striae (per Simpson, 1999). To promote 

visibility of these intersections, a photomontage was created of each thin section (Figure 4). 

Each montage consisted of 4 to 7 photographs taken at 40x magnification through a light 

microscope. The montages were scanned in pieces and reassembled digitally using Adobe 

Photoshop and analyzed with MetaMorph software. 

Two types of data were sought by counting striae of Retzius. First, counts per 

increment provided data on the rate of enamel formation. This method of determining 

enamel growth pattern relies on the critical assumption that the cross striation repeat interval 

(periodicity) is 8 (after Reid et al, 2002). Reid and Ferrell (2006) found that the modal value 
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in 49 Danish medieval mandibular canines was 8 (with a range of 7-11 days, normally 

distributed), but periodicities do vary within the enamel. For the purpose of this research, a 

periodicity of 8 was selected as the model standard. The average daily rate of enamel 

secretion was also assumed to be 3 μm (Schour and Poncher 1937). Second, the total number 

of striae for any given canine provided information of the total time of enamel growth.  

Total formation time was calculated by counting all the striae intersecting with the 

DEJ (after Simpson, 1999). Formation time in days was summarized by the following 

formula:  

Number of striae × 8 (days) = time to formation (days) 

Making internal and external defect timing comparable: Converting external to 

internal formation time 

Enamel growth pattern was defined in two ways: (1) the relationship between the 

location of the origins of normal striae along the DEJ and their corresponding terminations at 

the enamel surface, summarized by a regression equation and (2) the mean total time to 

crown completion, determined by counts of striae of Retzius throughout the enamel.  

Simpson’s (1999) method for converting internal to external defect timing (thus, 

making the distributions comparable) is duplicated here. The course of 79 striae of Retzius in 

the Black Friars sample and 84 in the Gray Friars sample (163 total) were recorded by 

measuring the internal intersection of each SOR with the DEJ and the external location of 

each from its surface manifestation to the cervico-labial junction, along the external surface 

of the tooth. The relationship between each pair of data points (internal and external 

positions) was analyzed using MS Excel and SAS software, resulting in non-linear regression 

equations useful for translating external to internal positions (or vice-versa). The location (in 

mm) of each defect from its cuspal, or leading, edge to the cervical margin of the tooth was 
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measured with a dissecting light microscope. Each defect location was plugged into the 

sample-specific distance function to derive a corresponding internal location along the DEJ. 

The conversion allowed direct comparison of the distributions of hypoplasias and 

pathological striae. It is expected that, based on enamel geometry, hypoplasias will be seen in 

imbricational only; but PS may occur at any position in the crown. A different mean 

distribution of PS from that of hypoplasias may suggest that the pathologies do represent 

different etiologies, i.e., acute and chronic. The equation itself represents the relationship 

between the internal and external architecture/growth of the enamel, a relationship which 

cannot be assumed to be the same in different (genetic) populations. The converted internal 

locations were plotted in 10% increments per the population model to determine distribution 

by location within the tooth crown. 

Standardizing for tooth size (for inter-tooth comparability) 

All sampled whole canine crowns were measured to standardize for differences in 

overall tooth size. Crown dimensions were measured with electronic calipers to the nearest 

hundredth of a millimeter in labio-lingual and mesio-distal planes. Maximum and midline 

crown heights were also measured with calipers to evaluate.  

Locations of pathological striae along the DEJ in thin sections of canines were 

standardized by dividing the absolute location in millimeters by the labiolingual breadth of 

the sectioned tooth (taken at the cervical enamel margins) (after Simpson 1999). 

ANALYSIS: COMPARISON WITH PUBLISHED SUMMARY DATA  

The first hypothesis, that the mean prevalence of pathological striae is greater in the 

medieval study sample than in archaeological samples from the New World, was summarized 

as: 

H1: dm > df 
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where d indicates mean defect prevalence, m indicates the medieval study sample, and f 

indicates comparative historic and prehistoric samples from northern Florida (representing 

AD 1- 1704) (Simpson 1999).  

The second hypothesis, that pathological striae occur in the “hidden” cuspal enamel 

of children ca. 6 to 18 months old, expanding the age range of defect chronology to include 

early infancy, was summarized as: 

H2: am < af  

where a indicates mean peak age range at occurrence, m indicates the study sample, and f 

indicates comparative samples from northern Florida in 50% of internal defects occurred in 

the cuspal half of the crown and before the age of 18 months. The age distributions of each 

type of defect (determined by using the population model of growth) was expected to differ, 

with PS not only occurring in infants, but also occurring on a different schedule from enamel 

hypoplasias (reflecting different ages at occurrence). 

The third hypothesis, that the pattern of enamel growth is unique to the study sample, 

was summarized as: 

H3: gm ≠ gf 

where g indicates growth, m indicates the medieval sample, and f indicates the archaeological 

population from northern Florida, USA analyzed by Simpson (1999). The medieval Danish 

study sample and the northern Florida samples represent genetically distinct populations, so 

their growth models may differ. The regression equations for crown growth were compared 

between the samples for statistically significant differences at the p<.0001 level. 

   

  



 

 

 

 

 

 

 

CHAPTER IV 

 

RESULTS  

OVERALL DEMOGRAPHIC STRUCTURE OF THE CEMETERIES 

The overall demographic structure of both cemetery samples is similar. Figure 5 

shows that adult males (n = 227) comprise 50% of the individuals excavated from the Gray 

Friars cemetery (n = 455). Adult females (n = 127) make up 28% of the sample, while adults 

of unknown sex (n = 33) comprise 7%. Juveniles (n=68), defined as individuals less than 16 

years old, comprise 15% of the sample. The Black Friars cemetery sample (n = 557) is 

comprised of mainly adults, with males (n= 235) at 42%, females (n=179) at 32%, and adults 

of unknown sex (n=48) at 9% (Figure 6). Juveniles (n=95) accounted for 17% of the entire 

skeletal sample. The dearth of juveniles in both samples is not entirely unexpected, as 

children in medieval Scandinavian cemeteries were often buried together (but apart from 

their families) in a separate part of the churchyard (Sellevold, 2008). However, it should be 

noted that no caches of child burials have been found at either cemetery. 

PREVALENCE OF ENAMEL DEFECTS 

Surface defects (hypoplasias) 

The sex and age breakdown of the skeletal individuals scored for surface defects is 

reflected in Table 1, while Table 2 describes surface defect prevalence in both cemetery 

samples. One tooth per individual was scored, with left mandibular canines selected 

preferentially. A total of 234 canines (representing 234 individuals – 209 adults and 25 

juveniles under age 15 years) were scored from the Black Friars cemetery. One or more  
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surface defects (SD) were detected in 218 of those, resulting in a SD prevalence of 93%. In 

the Gray Friars sample, 176 teeth were scored (156 adults and 20 juveniles), with 174 found 

to have one or more defects (see Figure 7). The prevalence in the Gray Friars dental sample 

was 99%, similar to that of the Black Friars. When the samples are combined (n=410), the 

prevalence is 96% (392 afflicted). 

Surface defect prevalence was also determined for afflicted teeth (Table 3) and for all 

teeth scored (Table 4). The mean number of surface defects per tooth in the afflicted Black 

Friars sample was 2.69, with a standard error of .10 and standard deviation of 1.43. The 

maximum number of defects for any one tooth was 7. In the Gray Friars sample, the mean 

number of SD’s per tooth in the afflicted sample was even higher, at 3.72 (SE = .14, 

SD=1.80). The maximum number of defects per tooth in the Gray Friars sample was 9, also 

slightly higher than the Black Friars sample. When the cemetery samples were combined, the 

mean number of defects per tooth for afflicted teeth was 3.15 (SE=0.09, SD=1.68). 

SD prevalence was also scored for all teeth in the sample, afflicted or not. The mean 

number of SD’s per tooth declined very slightly for both cemeteries. The mean for the Black 

Friars sample was 2.51 (SE=.10, SD=1.54), while that for the Gray Friars sample was 3.68. 

When the samples were combined, mean number of SD per tooth was 3.01 (SE=0.09, 

SD=1.77). 

The prevalence data indicate that: (1) individuals from both cemeteries had an 

extremely high prevalence of surface defects, (2) the mean number of defects per tooth was 

also high in both samples, with the Gray Friars sample experiencing more bouts of illness 

than the Black Friars, and (3) the population measure of illness as measured by mean number 

of defects per tooth for all teeth in the samples is similar to the rate for afflicted samples; 
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both are high. The number of individuals who got sick in these populations was high, and 

they had relatively frequent bouts of illness. 

Pathological striae 

Table 5 denotes pathological stria (PS) prevalence in both cemetery samples. One 

mandibular canine per individual was scored, with left canines sampled preferentially. From 

the Black Friars sample, 33 individuals were scored for PS. Of those, 10 were afflicted with 

one or more defects, resulting in a prevalence rate of 30%. In the Gray Friars sample, 30 

individuals were scored, with 6 showing one or more defects (Figure 8), indicating a 

prevalence rate of 21%, slightly lower than the rate in the Black Friars.  A scanning electron 

micrograph image of rod disruption at high magnification clearly shows rod disruption 

(Figure 9). 

The PS prevalence per tooth for the afflicted dental samples is described in Table 6. 

The mean number of PS per tooth in the afflicted Black Friars sample was 1.6 (SE=.34; 

SD=1.07). The Gray Friars sample showed a slightly lower rate per tooth, at 1.16 (SE.17; 

SD=.41). When the samples are combined, the mean number of PS per tooth was 1.43 

(SE=.22; SD=.89). The maximum number of PS per tooth in the afflicted samples was 4 in 

the Black Friars group, in contrast to 2 in the Gray Friars sample. 

The population measures of PS prevalence per tooth are less than half of those in the 

afflicted samples. Table 7 details PS prevalence per tooth for all teeth scored. The mean 

number of PS per tooth in the Black Friars sample was .48 (SE=.16; SD=.94), while the Gray 

Friars sample showed a mean number at half of that figure at .24 per tooth (SE=.09; SD=.51). 

When the samples were combined, the mean number of PS per tooth was .37 (SE=.10; 

SD=.77).  
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The prevalence data for PS indicates that the number of individuals experiencing 

illness that resulted in PS was relatively low, as was the frequency of illness. The values are 

lower than expected for a historic medieval skeletal sample, particularly in comparison to 

surface defect prevalence. 

MANDIBULAR CANINE DEVELOPMENT: A MODEL  

The distribution of striae was calculated for 6 mandibular canines (representing 6 

individuals), 4 from the Gray Friars cemetery and 2 from the Black Friars. Three of those 

teeth yielded adequate visibility of striae through the tooth and were included in the 

population model. The age, sex, and site affiliations of the teeth used in the model are 

described in Table 8. Two juveniles from the Gray Friars cemetery ages 11.5 and 14 years 

and one juvenile age 13 years from the Black Friars sample comprise the model, based on 

preservation and completeness of the crowns as well as highly visible SOR in thin-sections. 

One showed evidence of pathological striae, while all had surface defects. 

Figure 10 shows the number of striae that were counted in 10 percent sections along 

the DEJ, from the cusp (starting at 0%) to the cervico-enamel junction (100%). The pattern 

of stria distribution is similar in each – few striae are seen in the cuspal 3 tenths (0-30%) of 

the teeth, while the number of striae peak at 65
% 

to 85% of DEJ length.  The standard error 

ranged from over 3 in the 10-20% and 60-70% deciles, to under 1 from 80% to the cervix. 

Table 9 details the duration of crown formation in the 3 teeth of the sample. The total 

number of SOR for the teeth ranged from 187 to 193, with a mean of 190 (SE=2.03; 

SD=3.51). Assuming that periodicity (counts of cross-striations between adjacent striae) for 

the model was 8, crown growth was calculated to occur over a period of 1520 days, or 50.6 

months (see Table 10). The overall development of the mandibular canine in 10% increments 

of the DEJ is modeled in Figure 11. Growth clearly slows as the cervical portion of the crown 
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is reached (similar to Reid and Ferrell, 2006). Figure 12 shows that the cumulative duration 

of crown development over the growth period is non-linear and slows as growth progresses, 

and full crown height is achieved. No development is shown in the first ten percent of the 

DEJ as the mean number of countable striae in this section was 0. 

ESTABLISHING TIMING OF ENAMEL DEFECTS 

Scatter plots of the raw data from each cemetery sample (Figs. 8and 9) reveal, as 

expected, a curvilinear relationship between the internal and external ends of SOR. The 

regression equation that best fits the Black Friars sample is a quadratic equation written as:  

y = -.353 + .970x - .027x
2
 

where y is a location along the DEJ and x is a location from the cerivo-labial junction along 

the external surface of the tooth. 

The equation was based on 84 pairs of data points (Table 11). Curve-fitting with a 

quadratic equation for the Gray Friars resulted in the following function: 

y = -.038 + .831x - .009x
2
 

The quadratic regression was based on 79 pairs of data points (Table 12). Both plots reveal 

that error increases as SOR occur further from the cervical margin (the zero point at both 

axes). Figure 13 reveals that this pattern is more exaggerated in the Black Friars sample. A 3 

df test of equality was conducted on the parameter pairs between the distance equations of 

the both the Black and Gray Friars samples. The test showed that they are significantly 

different, with a p- value < 0.0001. For the equality test of the 3 coefficients separately, the 

p-value increases and ranges from .04 (x
2
) to .22 (y). The issue here is whether the statistical 

significance is meaningful functionally and contributes to real location differences.  
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The data used to produce the combined Black and Gray Friars distance function 

model included 163 pairs of data points. The quadratic regression on the combined samples 

(Figure 14) is written as: 

y = -.052 + .832x - .011x
2
 

The standard error was 0.343, and correlation coefficient was 0.980. The quadratic equation 

was chosen so that the data could be compared to published data from other skeletal samples. 

The medieval distance functions are summarized in Table 13. 

A 3 degrees of freedom test of equality of the combined sample distance function to 

Simpson’s (1999) function for the northern Florida populations again yielded significantly 

differences between the equations at the p<0.0001 level. But original data points were not 

compared as the Simpson (1999) function came from a published source.   

COMPARING SD AND PS POSITIONS ALONG THE DEJ 

Surface defects 

The absolute position of each surface defect was determined in both cemetery 

samples using sample-specific regression equations. Tables 14 and 15 detail the derived 

internal locations of surface defects along the DEJ in millimeters in the Black and Gray 

Friars dental samples, respectively. The locations of defects ranged from 0.31 to 7.55 mm 

from the cervico-enamel junction (mean 3.42 mm) in the Black Friars sample and 0.50 to 

8.33 mm in the Gray Friars (mean 3.55 mm). 

 Pathological striae 

The absolute locations of PS as measured along the DEJ from the cervix in the Black 

and Gray Friars samples are noted in Tables 16 and 17. The mean absolute locations of PS in 

the Black and Gray Friars samples were nearly identical, at ca. 4.75mm from the cervix. The 

relative locations, standardized by dividing by the cervico-enamel junction breadth, were 
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correspondingly similar at .68 and .69 respectively (Figure 15). (The combined mean 

absolute location for both cemeteries was .68.) This indicates similar patterns in the average 

timing of morbidity in both groups that resulted in microdefects based on positional 

measurements. 

Distribution and timing of SD versus PS 

Figure 16 shows the distribution of the number of SD by percent of DEJ crown height 

in the Black Friars Cemetery. The majority of SD in the sample, 174 defects, occurred in the 

60-70
th

 percentile of DEJ crown height, followed by the 70-80
th

 percentile, with 144 defects, 

and the 50-60
th

 percentile at 123 defects. According to the population model, the peak in 

prevalence would occur at chronological age 30 months (2.5 years), given that canine 

development begins at age 4.5 months. 

The pattern of defect distribution in the Gray Friars sample (Figure 17) is similar, 

with the largest number of SD, 172, occurring in the 70-80
th

 percent of the DEJ crown height, 

followed extremely closely by the 60-70
th

 percentile with 170 defects, and the 50-60
th

 

percentile with 116 defects. The corresponding ages at peak prevalence in the Gray Friars is 

between 30 and 40 months (2.5 – 3.3 years). The majority of defects occurred after 40% of 

the DEJ crown height was achieved. 

The distribution of number of PS by percent DEJ crown height is depicted for the 

Black Friars sample in Figure 18. It should be noted that the range of defects per percentile 

was narrow, at 0 to 2. Prevalence peaks at the 50-60th percentile at 7 defects and, according 

to the population model, corresponds to an age of 21 months (1.75 years). Defects were also 

detected in the cuspal enamel, even in the first 10-20
th

 percent of DEJ crown height (0.8 

months). 



 

54 

The distribution of number of PS by DEJ percentile in the Gray Friars sample is 

depicted in Figure 19. Prevalence peaks at 2 defects in the 50
th

 to 80
th

 percentiles, which 

correspond to chronological ages 21 to 40 months (1.75 – 3.3 years). Defects were also 

detected in the cuspal enamel at the 20
th

 -30
th

 percent of DEJ height, corresponding to age 6.9 

months. 

  

 



 

 

 

 

 

 

 

CHAPTER V 

 

DISCUSSION 

The research presented here tested the following hypotheses: (1) the prevalence of 

stress as defined by enamel microdefects called pathological striae of Retzius is significantly 

higher than in pre-urban skeletal samples assessed with similar methods, (2) stress affected 

children as young as 6 to 18 months as evidenced by the pathological striae in cuspal enamel, 

and (3) the pattern of canine crown growth is unique to the study population. 

OVERVIEW OF MAIN FINDINGS 

Prevalence of pathological striae 

The first main finding was that the prevalence of PS was lower than that of the 

northern Florida dental samples (assessed with a similar method) and lower than in other 

medieval samples, while surface defect prevalence was extremely high. Unexpectedly, the 

prevalence of microdefects, or PS, was lower than in Simpson’s (1999) prehistoric and 

groups, despite using the same criteria for identifying the defects. While the Black and Gray 

Friars samples showed individual prevalence of microdefects at 30% and 21% respectively, 

Simpson’s (1999) early and later preagricultural groups showed greater frequencies of 

individuals afflicted, at 67% and 36% respectively. For the preagricultural groups combined, 

Simpson (1999) reported an average of 1.0 PS per tooth, for all teeth combined. This 

contrasts to the population value for all of the medieval teeth scored, at 0.37 per tooth which 

does not support the first hypothesis, that the medieval groups would have higher PS 

prevalence. Simpson’s (1999) early contact and mission samples had even higher prevalence 
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of PS in individuals, at 54% and 83% afflicted, and for all canines scored in each sample, at 

0.9 and 1.4 respectively. The general pattern in these groups shows an increase in micro-

indicators of growth disruption through time that is not unexpected with aggregation and 

missionization. What would account for the relatively low prevalence of microdefects in the 

medieval friary cemetery samples? Intraobserver error could account for some differences, 

although most of the defects were verified independently by two observers.  For example, if 

one observer saw rod changes at 1000x and the other did not, the stria was not recorded as 

pathological.  This could result in an undercounting of microdefects, given the strict criteria 

that were used to identify microdefects.  Additionally section preparatory and microscopy 

protocol was similar to Simpson (1999), the sections were produced by the author and not by 

an independent laboratory, which may have resulted in a compromise in the optical quality of 

some sections. Another plausible explanation lies in the type of stress experienced by the 

medieval children of Odense, that they experienced relatively low levels of acute stress but 

extremely high levels of chronic stress, but that does not explain the extreme disparity in 

population PS prevalence levels. It may be more likely that the strict criteria for 

identification of PS resulted in fewer positive identifications. FitzGerald and Saunders (2005) 

argue that there are no fundamental differences in the crystalline structure of Wilson Bands 

(irregular striae) and SOR, and they refrain from giving a minimal definition of a Wilson 

band that would reflect all physiological stress events. 

Interestingly, the prevalence of hypoplasias (surface defects) in mandibular canines 

(representing individuals) is much higher in the present study samples (96%) than in other 

medieval Scandinavian samples, for example, Hanson and Miller’s (1997) study of 

mandibular canines (17.5-21.5%) from medieval Norway, Denmark, Iceland, and Greenland. 
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Based on these figures, Hanson and Miller concluded that early childhood (defined here as 

ages 4 to 7 years) was a stressful time for medieval Scandinavians; however, the ages derived 

in this study are based on published crown development schedules and may be erroneous for 

populations other than modern Americans. 

Thomas (2003) found that linear enamel hypoplasia occurred as the least common 

enamel microdefect, at a population prevalence of close to 55%, surpassed by weak and 

strong Accentuated Striae (over 85%) in a sample of canines from the medieval Danish 

village of Tirup (AD 1100-1350). In additional research on Tirup, Boldsen (2007) found that 

120 of 458 skeletal individuals who survived to at least age 6 showed hyploplastic defects 

(26.2%) and that adult males and young adult females with linear hypoplasia experienced 

higher mortality those those without hypoplasia. These comparative data point to a disease 

pattern in medieval Odense in which chronic stress events were extremely common and 

affected much, if not all, of the juvenile population. These data do not support the first 

hypothesis, that microdefects would be more prevalent in the medieval Danish samples than 

in the northern Florida samples described by Simpson (1999). 

The relationship between enamel hypoplasias and other stress indicators has been 

investigated in several medieval Scandinavian skeletal assemblages. Brinch (1959) noted that 

enamel hypoplasias occurred in the dentition of several individuals buried at the medieval 

Salernitan Augustinian monastery of Æbelholt, ca. AD. 1175-1561, near Copenhagen on the 

island of Sjælland. The individuals buried on the monastery grounds are assumed to include 

abbots, friars, and lay-brothers, as well as inhabitants of the nearby countryside and the sick 

who were treated by monks in the monastery's infirmary. The majority of the individuals with 

hypoplastic enamel lesions exhibited only faint transverse lines in the incisors and canines. 
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However, Brinch notes that the absence of more severe hypoplastic lesions may be due to the 

significant degree of wear on the teeth.  

Swärdstedt’s (1966) dissertation on the odontology of the skeletal individuals from 

medieval Westerhus (Västerhus) churchyard, AD 1025-1375, in Sweden is perhaps the most 

exhaustive dental study of a medieval Scandinavian population. Dental caries, calculus, 

attrition, ante-mortem tooth loss, and enamel hypoplasia were analyzed and quantified in 

individuals with well-preserved dentition (n=132). Enamel surface defect prevalence in the 

Westerhus dentition was found to be “high.” Defects occurred commonly as bilateral 

transverse bands, the majority of which were formed between the ages of 2.5 and 4 years. 

When the skeletal population was broken down by age category, hypoplasias were the most 

prevalent in individuals who died young. Mature individuals (ages 40-60 years) exhibited the 

least number of hypoplasias; however, attrition may have had a role in obscuring actual 

hypoplasia prevalence in the mature individuals.  

Microdefects 

The second main finding was that microdefects occurred in the friary samples in 

individuals prior 18 months of age. The timing of defects was also different between the 

medieval samples and those of the northern Florida groups. Simpson (1999) found that PS in 

peaked in children prior to age 24 months, while SD peaked at age 45 months. Using the 

same methods, this study found that PS peaked at age 21 months in the Black Friars and at 

ages 21 to 40 months in the Gray Friars sample, while SD peaked at between ages 30 - 40 

months in both medieval dental samples. The pattern of a peak in PS prevalence earlier with 

a later peak in SD prevalence suggests, as did Simpson (1999), that the defects do have 

different etiologies. This in itself is expected, as hypoplasias occur only in lateral (later 

forming enamel); however, the PS can occur anywhere in the enamel but were not found to 
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peak in coincidence with hypoplasias. PS occurred in the medieval groups between the 10
th

 

and 30
th

 percentiles of DEJ crown height (up to 7 months), while most SD occurred after the 

40
th

 percentile. The prevalence of microdefects in cuspal (hidden) enamel extends the defect 

chronology into infancy. These data do support the second hypothesis of the study, that 

enamel defects will be detected in children prior to 18 months of age when microdefects are 

assessed. FitzGerald and authors (2006) have clearly documented microstructural enamel 

defects in nearly 40% of their deciduous dental sample from Imperial Roman infants. These 

data suggest the importance of looking at microstructural defects to establish a more accurate 

picture of stress profiles of infants and young children in the past. 

The total duration of mandibular canine crown formation based on total stria counts 

also differed in the medieval and northern Florida samples. While the crown was found to 

develop in 50.6 months (1520 days) in this study, Simpson’s (1999) analysis of the northern 

Florida groups revealed that the crown developed in 60-63 months. He denoted that this 

duration of development is shorter than the 78 month period used in some published samples 

(see Goodman and Rose, 1990). While the duration of crown growth in the friary samples 

appears comparatively short, Reid and Dean (2006) found that mandibular canines (n=67) 

from the medieval Danish village of Tirup (AD 1100-1350) completed formation, given an 

initiation age of 200 days, in 62.3 months (formation time was based on separate calculations 

of cuspal and lateral enamel formation using average daily secretion rates and perikymata 

counts). The lateral enamel completed formation in 1588 days, or ca. 53 months. Reid and 

Ferrell (2006) found a similar imbricational crown formation time based on SOR numbers 

and periodicities in their sample of mandibular canines (n=49) from Tirup. The average 

formation time was 1594 days, or 53.1 months. The mean number of SOR in the 



 

60 

imbricational enamel of the Tirup canines was 190.3 (range 142 - 257), while the total 

number of SOR for the entire course of the enamel along the DEJ in this study was 190 

(range 187 – 193). This suggests that the duration of crown formation in the mandibular 

canine may be somewhat plastic among and within populations, that methodology (including 

sample size or sectioning method) may be yielding different crown formation estimates, or 

that decussation in the cusp tip may be preventing identification of some striae. Watt and 

Lunt (1999) found variation in the age estimations of different teeth in juveniles from the 

medieval Whithorn site in Scotland, regardless of the aging standard used (see Massler et al., 

1941; Ubelaker, 1989; Demijirian et al., 1973, 1976; Smith, 1991). Because the variation was 

directional, the authors decided to test whether the relative stages of development in the 

medieval group were different for those in modern North Americans, on whom the aging 

criteria was based. Using the first molar as a reference tooth against which the development 

of other teeth were compared, Watt and Lunt (1999) compared the development of the 

Whithorn dentitions to that of Native Americans (Moorrees et al., 1963) and modern French 

Canadians (Tompkins, 1996). 

Mandibular canine crown geometry 

The third main finding was that the hypothesis that the pattern of mandibular canine 

crown geometry is unique to populations was weakly supported. The external –to-internal 

distance regression equations of the medieval Scandinavians and the prehistoric and historic 

northern Florida samples described by Simpson (1999) were significantly different, but the 

differences may not be functionally significant. For example, a 6mm external defect distance 

from the cervico-enamel junction would yield and internal distance of 4.68mm with 

Simpson’s (1999) population equation and 4.65mm with the combined medieval Danish 

model. This suggests that, at least in this case, there is weak evidence for genetic or 
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environmental inter-populational variation in the geometry of how growth lines are 

manifested from DEJ to surface. The third hypothesis, that the medieval populations are 

unique in their canine crown growth pattern, was only weakly supported.  

Sources of childhood stress in medieval Scandinavia 

The setting: The medieval town of Odense. The study sample is derived from two 

friary cemeteries, dating from ca. A.D. 1250 to 1536, in the Danish town of Odense.
8
 At the 

beginning of this period, Odense was experiencing a new urban phenomenon that was 

sweeping all of Europe - the rise of the urban monastery and the birth of the Catholic friars-

preachers. The town was a crucial element in the success of the friary movement because it 

allowed the friars to preach to hundreds of people in one, densely populated location 

(Lawrence, 1994; Lynch, 1992). The friaries brought new hope for salvation to the 

townspeople – and an alternative to parish church burial. In part because of its status as an 

ecclesiastical center, Odense was a growing town in the early high medieval period, with a 

population estimated to be over one thousand inhabitants by A.D. 1300 (Sawyer and Sawyer 

1993).
2
 A merchant class had emerged in towns all over Scandinavia by this time, fostering 

specialized production of goods for seasonal markets and trade with the Scandinavian 

kingdoms, the Germans, the Baltic, and other parts of Western Europe (Sawyer and Sawyer, 

1993). Odense was governed by a town mayor (Danish., borgmester) and council. And the 

city had all the accoutrements of a typical northern medieval town, including an open sewage 

                                                 
8
 The medieval period in Denmark extends from A.D. 1050, the end of the Viking Age, to A.D. 1536, 

the time of the Lutheran Reformation. The skeletal sample spans a period of 300 years, from ca. A.D. 1250 to 

1536, and dates from the high to late Middle Ages in Scandinavia. The medieval period in Scandinavia is 

significantly later than in continental Europe. 

2
 The Danish medieval population was at its maximum between A.D. 1250-1300 at just under 1 million 

people, although this estimate is considered inaccurate by some scholars (Benedictow 1993). The exact 

population of Odense is unknown, although the largest towns in medieval Scandinavia were Stockholm, 

Sweden and Bergen, Norway, with ca. 7000 inhabitants each (Sawyer and Sawyer 1993). 
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system, an irrigation system, numerous wells, cobbled and dirt roads, home gardens and 

pens, wooden and brick residences, watermills, municipal buildings, workshops for smithies 

and cobblers, hospitals, schools, churches, and cemeteries (Christensen, 1988). The 

appearance of the Black Plague in Denmark in A.D. 1348, coupled with famines throughout 

the fourteenth century, effected the demise of smaller towns in Scandinavia. But Odense 

survived and even prospered into the 15
th

 and 16
th

 centuries, enlarging the fortified areas of 

the town with inner and outer gates, building more ecclesiastical institutions and enlarging a 

city hospital. The Lutheran Reformation in A.D. 1538 brought with it changes in the use of, 

and in some cases, disestablishment of, Odense’s ecclesiastical buildings. Otherwise, the 

appearance that the town took on in the 16
th

 century was maintained by in large for the next 

several hundred years, into the mid-20
th

 century (Christensen, 1988).  

MEDIEVAL SCANDINAVIAN DISEASE ENVIRONMENT 

What diseases were prevalent? 

Bioarchaeological analyses of skeletal remains are a major source of information 

about morbidity and mortality in Scandinavia. Some of the earliest paleopathological 

research in Denmark was conducted by Vilhelm Møller-Christensen (1958), who described 

the pathological skeletal lesions of those buried in the churchyard at Æbelholt Kloster , a 12
th

 

century medieval Augustinian monastery located in Sjælland, DK. He found evidence of 

localized trauma, arthritis and subluxations, dental caries, and scurvy as well as skeletal 

indicators of chronic diseases such tuberculosis, non-venereal syphilis, and ergotism (“St. 

Anthony’s Fire”). There is no doubt that leprosy was also prevalent in Scandinavia; the leper 

hospital cemetery site known as Skt. Jørgensgård in Odense shows clear evidence of the 

skeletal changes associated with leprosy (see Anderson, 2000). Evidence of acute, fast-acting 

diseases is much more rare archaeologically (hence, a need for analyzing pathological striae 
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in the enamel). English sources describe diseases such as cholera, typhoid fever, malaria 

(“the ague”), smallpox (“red plague”), diptheria, dysentery (“bloody flux”), diarrhea 

(“squirt”), scurvy, and anthrax (“black bane”) (Bishop, 1968; Hays, 1998), which have no 

skeletal correlates. Additionally, some chronic conditions result only in non-specific stress 

indicators (like enamel hypoplasia). This means that these pathologies are not attributable to 

a specific disease process but are indicative of generalized metabolic stress. Swärdstedt 

(1996) found that dental indicators of stress in the form of enamel hypoplasias were most 

common in the individuals believed to be slaves, while Hölder-men (land tenants) exhibited 

fewer hypoplasias and the highest ranking group, Länder-men (literally, “landed men,” or 

land owners), exhibited the least lesions. Swärdstedt (1966) suggested that differences in diet, 

housing conditions, and infectious disease prevalence affected health status of the different 

social groups, possibly reflected in differential hypoplasia prevalence. Milk may have been a 

food reserved for higher social groups, and a number of skeletal individuals from Westerhus 

show signs of malnutrition, including rickets. The role of infectious disease in producing 

health stress is also assumed to be important given that 50% percent of the 364 individuals 

from the churchyard died before age 7 years. Swärdstedt attributed this high juvenile 

mortality to infectious disease, which children from the slave class would be least able to 

combat. Unlike Swärdstedt (1966), Tkocz and Brøndum (1985) calculated the prevalence of 

enamel hypoplasias in the skeletal individuals from a Franciscan cemetery (ca. A.D. 1236) in 

the medieval town of Svendborg on Fyn, Denmark, and found no relationship between social 

status and defect prevalence. Unfortunately social class has not been established in the Black 

and Gray Friars skeletal assemblages, so distinctions in disease prevalence by guild or other 

social grouping cannot be made. 
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Disease in urban environments 

Susceptibility to epidemic disease characterizes the difference between disease risk in 

urban versus rural medieval Scandinavian communities. Boldsen (1984) compared the 

demographies of a skeletal population from the 11
th

-12
th

 century rural agrarian cemetery site 

of Löddeköppinge in Scania, Sweden to that from the 12
th

-16
th

 century urban parish site of 

Lille Sct. Mikkelsgade in Viborg, Denmark. He found that age-specific mortality rates were 

high among children and young adults from the urban site, while mortality rates were higher 

among mature and older people from the rural community. These results support the idea that 

urban endemic disease effectively kills children and young adults, while occasional 

epidemics impacting more sparsely populated rural groups affect all parts of the population 

equally (resulting in the higher adult mortality rates at Löddeköppinge).  

Medieval diet 

Barley was of major dietary importance to the majority of people living in medieval 

Scandinavia. Barley was the staple cereal in the medieval diet and was used to brew ale, the 

staple drink for adults and children, to make porridge, and, along with rye, to bake bread. 

Wheat was also produced, but in much smaller quantities, as only the wealthy consumed it 

(Skaarup 1993). Written sources make little mention of large-scale vegetable agriculture, but 

there are references to cabbage, beets, onions, peas, beans, and endives (all suited to growing 

in cooler climates).  

Herbs were grown in medieval Scandinavia, including dill, parsley, horseradish, 

cress, mint, thyme, and marjoram (Skaarup, 1993). Spices were available via importation, but 

were expensive. Hops and bog myrtle were used to flavor beer while honey and sugar were 

used commonly as sweeteners. Vinegar, mustard, and salt were also common additives to 

foods. Wild foods were also an important part of the diet. They included wild fruits and 
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berries such as apples, pears, cherries, blueberries, sloes, strawberries, and raspberries, as 

well as hazelnuts and wild caraway. Fruits like figs, oranges, and grapes could be imported, 

but, like spices, were expensive and probably not a regular component in the diets of 

commoners (Skaarup 1993).  

Brinch (1959) and Sagne (1990) agree that attrition during the medieval period in 

Scandinavia was directly correlated with the denaturalized state of foodstuffs consumed and 

that, not unexpectedly, the level of dental attrition in the Middle Ages was much higher than 

that in modern Scandinavian populations. Furthermore, Brinch (1959) notes that grain 

grinding was "primitive" in the Middle Ages and that neither refined sugar nor potatoes 

existed in Scandinavia at the time.  

Medieval Scandinavians also consumed a variety of animal products. Generally 

faunal remains in urban areas in medieval Scandinavia (located within agricultural lands) 

indicated the slaughter and consumption of cattle, followed by sheep and pigs. These animals 

were often slaughtered in the fall to avoid the cost of feeding them through the winter. Fowl 

provided a protein source for winter (hens, geese, ducks) in the form of meat and eggs. Milk, 

cheese, and other dairy products were processed from cows, sheep, and goats (Skaarup, 

1993).
3
  

A major transition in the diet of medieval Danes occurred with the arrival of the 

plague and the agrarian crisis and periodic famines in the 14th century. Kjersgaard (1978) 

hypothesized that the amount of cultivated land decreased through the 1300s and 1400s, 

accompanied by a shift in diet from equal portions of grains to meat in the 1200s to an 

increasing dependence on meat and livestock raising in the 14th and 15th centuries (such that 

                                                 
3
 Although regular fasting requiring abstinence from meat compromising about 180 days of the year, 

children weren't usually subject to the same restrictions (Orme 2001).  
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the consumption ratio of grains to meat became 1:2). Others sources indicate an increase in 

cattle farming in the 14
th

 and 15
th

 centuries (Sawyer and Sawyer, 1993; Fenger, 1993). 

Fenger (1993) notes that the emphasis on cattle husbandry may explain, in part, farm 

abandonment prior to the plague epidemics.  

Even in cities maintaining large numbers of livestock and local garden plots, 

medieval Scandinavians were still dependent on outside sources for food. Thus, adequate 

food preservation and storage was crucial. Some vegetables and fruit were dried or preserved 

in honey or sugar, while meat and fish were smoked, dried or salted (Skaarup 1993).  

THE LIVES OF MEDIEVAL CHILDREN IN NORTHERN EUROPE 

The medieval concept of childhood  

In light of the findings in this study that acute stress episodes were detected in 

children prior to 18 months of age and well after, it is valuable to assess what roles children 

played in medieval Northern European society that may have furthered their exposure to 

physiological and psychosocial stressors. 

For the last four decades, the prevailing view of childhood in medieval Europe has 

centered on the arguments of Ariès (1962), that medieval society did not recognize childhood 

as a distinct period culturally, and that adults viewed children as little more than small, 

inadequate versions of themselves. Orme (2001) recently countered these views, suggesting 

that medieval Europeans viewed childhood as a distinct phase(s) of life. This notion relies in 

part o the medieval concept of the ages of man, which recognized the ages of three and seven 

as particularly important for children because they marked the time of weaning and the end 

of infancy. In addition, Orme (2001) presents documentary evidence that legal and religious 

entities recognized childhood as separate from adulthood in medieval England by A.D. 1200. 

In the later Middle Ages, English children aged seven and up were deemed by the church and 
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by the law to be old enough to be formally charged with crimes, to be engaged to be married, 

to be tonsured as clerks, and in the case of some girls, to be sexually active. Historical 

evidence documenting these circumstances is unusual, possibly indicating that the age of 

seven may have been more symbolic than actual in marking the transition from infancy to 

childhood (Orme 2001). In support of this modern concept of childhood in medieval Europe, 

Hanawalt (1993) argues that, in the 13
th

 and 14
th

 centuries, the English became preoccupied, 

and even obsessed, with preparing their children for passage into the adult world, as 

evidenced by the number of advice manuals for child-rearing and the change in English laws 

to include children. Sentimentality for youth is also evident by the existence of medieval 

English phrases that refer to "the tender years of youth" (Hanawalt, 1993). And medieval 

adults appear to have recognized a distinct culture of young children that included significant 

amounts of playtime and an accompanying material culture of toys and children's furniture 

(Orme, 2001). 

Infancy and early childhood 

The birth of children in Britain and Scandinavia was a notable event in all households 

and celebrated with elaborate baptismal and naming ceremonies, involving both parents and 

godparents (Hanawalt,1993; Jacobsen, 1993). Children had, in fact, layers of identity that 

began in the baptismal ceremony with their christening. The godparents and possibly a nurse 

or wet nurse (in wealthier families) were all children's first social network outside of the 

family, followed by the members of the parish in which their baptism occurred, and later the 

family of apprenticeship or service (Hanawalt, 1993). Jacobsen (1993) reports that numerous 

ceremonies surrounded the birth of a child in medieval Scandinavia, including the 

"kvindegilde," a celebratory feast for the female helpers at the birth. From the 13th to 19th 

centuries, the kvindegilde was known to be a rowdy affair, with eating, drinking, dancing, 
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and mocking a straw figure dressed as a man. Baptism feasts including men and women 

followed shortly after birth. And after a recovery period, the new mother participated in the 

"kirkegang" (church-going), a religious ceremony celebrating her recovery and sometimes 

demonstrating her social status. 

In England, urban children had an extended system of adult care in the proximity of 

neighbors and parishioners, despite the health risks that other facets of city life entailed. An 

infant's mother was its primary caretaker, along with a nurse and other members of the 

household. For the first year of its life, a child would be kept at home, swaddled in a cradle. 

Infants were nursed by their mothers or by a wet nurse hired by the family (Hanawalt, 1993).  

English infants were weaned from breast feeding between ages one and three years 

(Hanawalt, 1993). The analysis of diet in juvenile skeletal remains from the medieval 

Swedish site at Westerhus (A.D. 1100-1350) and from 12
th

 century medieval Schleswig, 

northern Germany supports this assertion. According to trace element analyses, Iregren et al. 

(1993) and Hühne-Osterloh and Grupe (1989) conclude that weaning likely occurred before 

age two years. After age 2, children were fed with plant-based foods. Orme (2001) notes that 

English mothers and nurses would masticate food and then feed it to children without teeth. 

Babies were also fed a kind of gruel called "pap" made from animal milk or water mixed 

with meal or bread.  Dietary transitions like this could potentially account for the prevalence 

of defects seen in the Odense populations between infancy and early childhood.   At age 

three to four years, children were given small beer (a second brewing of ale) because it was 

believed to be more nutritious than water. Bread, hard-boiled egg yolks, and pared apples 

were also recommended for toddlers (Orme, 2001). Beer and wine were common drinks at all 

meals, even for children. Hanawalt (1993) notes that moralists of the time dictated that 
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children were to have "only two or three drinks of wine or beer during a meal because 

beverages deformed their minds and caused an unreasonable diet" (1993: 73). It was far more 

likely that wine was had by wealthier families, and beer, the standard for the less fortunate. 

For example, the 1513 household book of the Percy earls of Northumberland recorded that 

the older children were to have for breakfast household bread, wheat bread, two pints of beer, 

and meat in the form of chicken or boiled mutton bones. The children in the nursery were 

given wheat bread, only one pint of beer, and boiled mutton bones. Dinner would include 

butter and fresh fish. The child servants in the earl's chapel (in keeping with their lower 

social status) were fed a different diet. They were given household bread only - probably a 

barley rye bread - beer, and boiled beef for breakfast. And servant children ate salt fish, never 

fresh fish, on Fridays and at dinner (Orme 2001). 

Children remained in and around the home through their first few years, eventually 

contributing to running the household. Children as young as age 4 were given chores such as 

fetching water for the household from nearby water sources or helping in other simple chores 

(Hanawalt, 1993; Orme, 2001).  

Later childhood: Children as economic contributors to medieval society 

Children actively contributed to the economic well-being of medieval society as 

apprentices and servants. By age 12 years, most children left their natal homes to live with 

and work for their employers. Both apprenticeship and service were life stages, transition 

periods between childhood in the natal home and independent adulthood during which 

adolescents learned skills and accumulated wealth for their future roles as adults. Entering an 

apprenticeship meant working in a shop all day, learning a craft (such as shoemaking, 

smithing, or baking) from a master, and preparing ultimately for life as a full-fledged guild 
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member (Hanawalt, 1993).
4
 The majority of merchant and craft guilds were established in 

Scandinavian cities in the 14th and 15th centuries (Jacobsen, 1993). Apprenticeships were 

privileged positions because they offered an opportunity for upward mobility, stable income, 

and a secure future. Apprentices had an important role in the direct production of goods and 

made a significant contribution to the economy. In some cases, an apprentice married into his 

master's family and succeeded him in the business (Hanawalt, 1993).  

Adolescents whose families could not afford to make them apprentices sent them into 

service instead. Although servants, like apprentices, had a contract with their masters 

normally lasting 7 to 10 years, they far outnumbered apprentices in the city. Younger servants 

hoped to work out their contractual term in their masters' households to accumulate dowry 

money for marriage or enough money to return to their villages outside the city to set up their 

own households. This was not commonly achieved by less skilled servants, and some 

become career servants, working as scullery maids, house and shop cleaners, etc. Those most 

skilled worked, for example, as journeymen or skilled sewers who waited personally on the 

master; more moderately skilled servants worked in baking, brewing, and selling food and 

drink. It is important to note that service drew people from a wide range of social 

backgrounds, although children going into service were generally from less well-to-do 

families than those entering apprenticeships (Hanawalt, 1993). 

Service became particularly important after the Great Plague of AD 1348-49. As 

population decreased, the labor demand increased; and apprentices and servants were in 

shorter supply. Masters in medieval London went to extremes to secure child servants, from 

                                                 
4
 Guilds are defined as corporations of merchants and craftsmen. They developed in medieval Europe 

as an urban phenomenon.  
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kidnapping them to enticing them to break existing contracts, both of which were 

prosecutable offenses (Hanawalt, 1993). 

Other insights into children’s risk of death  

Naming practices may give some insight into the risk of death for children in 

medieval England. It was not uncommon for two or three children in a family to bear the 

same Christian name - evidence to some historians that parents were aware of the likelihood 

that one or more of their children would die before adulthood and that naming two children 

the same would ensure at least one child might survive to preserve the name (Hanawalt, 

1993).
5
  

How a child was treated and whether he or she lived or died may have been 

dependent, in part, on the child’s sex. Hanawalt (1993) cites an increase in female mortality, 

according to wardship cases in London in the fourteenth and fifteenth centuries. Hanawalt 

suggests that male children in medieval London may have been given better care because of 

their higher social value; males brought wealth into the family through marriage while 

female children required dowry from their families for marriage. Hanawalt (1993) cites a 

division of labor by sex attached to children aged 2-3 years, as evident from urban and rural 

coroner's inquests of accidental deaths; most boys were killed outside the home, while girls 

died inside. By age 4, parents began to discipline children to make them fit for proper 

society. Corporeal punishment was standard and even recommended in some cases, although 

maliciously beating a child without reason was discouraged (Hanawalt, 1993). 

                                                 
5
 Hanawalt (1993) presents an alternative to this sentimentality for names. The most common naming 

practice in medieval England was for a child's god-parents to name him or her. Two children in a family may 

easily have different god-parents with the same name, especially if the name was common. 
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CONCLUSIONS 

This dissertation presented a justification for using a population-specific method for 

assessing stress via macrodefects and microdefects in two skeletal samples from medieval 

Denmark. A method developed by Simpson (1999) was employed to increase the accuracy of 

the timing estimation of defects by determining locations along the DEJ for both internal and 

external defects. 

The methods presented here offer three distinct advantages:   

(1) “Hidden” cupsal enamel is taken into account, along with lateral enamel to assess 

growth disruption via enamel defects.  This lengthens the window of time available for 

assessing stress that analyses of surface defects, or hypoplasias.  Canine crowns present a 

significant period of time that allows evaluation of stress in the prior to age 1.5 years if the 

cuspal enamel is taken in to account. 

(2) By employing a histological method (after Simpson, 1999) that uses counts of 

regular growth lines along the dento-enamel junction from the cusp tip to cervix, a 

population-specific model of crown duration and rate of growth can be generated.  This 

solves two problems – (a) it circumvents the problem of grafting on a model from an entirely 

different population, which may not be accurate and (b) it allows for much greater accuracy 

in terms of timing normal growth and episodes of growth disruption in days that linear crown 

development models and radiographic studies do not have.  This is not to say that standards 

can’t be developed, or that every skeletal collection requires its own model for growth and 

pathology timing – it is important to recognize that even genetically rigid growth may vary 

through time and space, that it can be contextual and that we can do something more to 

elucidate the variation that likely existed in children who experienced stress hundreds or even 

thousands of years ago. 
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(3) By using a population-specific method for timing defects that was not as labor- or 

time-intensive as other methods for determining duration and rate of canine crown 

development (for example, the method for calculating cuspal formation time using 

periodicities and measures from the dentin horn, added to imbricational enamel formation 

using histological SOR or surface perikymata counts in a large sample of teeth) this method 

is potentially more user-friendly in non-dental laboratories.  The value lies in using a small 

sample size that utilizes counts of SOR throughout the crown, in cuspal, mid-crown, and 

cervical portions.  This makes the method potentially useful for bioarcheological analyses 

which may have neither the time nor the budget to do large scale dental studies that require 

sending dental samples to another source for processing and analysis.   

Overall the hypotheses of this research were only partially supported by the findings: 

(1) PS did occur in infancy, expanding the stress profile to include ages that would not be 

included with analysis of surface defects only; (2) using the same method for estimating 

crown development duration, timing, and criteria for defect identification as Simpson (1999) 

, PS prevalence was unexpectedly found to be much lower (and surface defects, higher) in 

samples from the Odense friaries versus those of northern Florida (Simpson, 1999); and (3) 

comparison of the distance functions (representing enamel growth geometry) were found to 

be significantly different in the Odense and northern Florida samples. While statistically 

significant, the differences may be not be functionally significant. 

One potential issue with the method for calculating crown development may come to 

the lack of being able to detect and count striae of Retzius in the first 10% of DEJ length 

from the cusp, thereby compacting (in small part) the full time to complete development. The 

crown grows very quickly in this area, and the SOR may be difficult to detect due to 



 

74 

decussation (Risnes, 1986). It may be useful in the future to compare total cuspal enamel 

formation time estimated by the method of Reid and Dean (2006) to counts of SOR in the 

Black and Gray Friars samples to determine how much time is not accounted for in the first 

10-20% of DEJ height. Other suggestions for future research include: (1) as periodicities may 

vary in different parts of the crown (Reid and Ferrell, 2006), it may be beneficial to 

determine periodicities by decile rather than using a modal value as in this study; (2) a larger 

sample size for a population model may be necessary, as the range of SOR counts was 

narrow; and (3) re-evaluation or a relaxation of the criteria for determining what constitute an 

accentual, irregular, or pathological stria of Retzius may be useful, if the conjectures of 

Fitzgerald and Saunders (2005) are correct. 

What do the methodological contributions tell us ultimately about childhood health in 

medieval Odense? 

Dietary transitions in infants and toddlers: Weaning stress 

It is critical to note that the use of these methods helps to highlight the prevalence and 

timing growth disruption in medieval Danish children to enhance the understanding of  how 

medieval children in Odense coped with the tumultuous time period between AD 1250 and 

1539.  Stress during childhood in the groups examined here can be described as nearly 

universally chronic (as represented by enamel hypoplasia), with much fewer acute episodes 

(as represented by PS), in comparison. While traditional arguments of stress have attributed 

peak stress to the “weaning period” of age 2-3 years in children in a number of 

archaeological populations, historical sources have indicated that weaning occurred between 

1 and 3 years in, for example, medieval England (Hanawalt, 1993). It was also not surprising 

that surface defects were peaked at ages 2.5 to 3 years in the Odense friary groups, as the 

enamel that develops along the first 30% of the DEJ from the cusp is hidden and never 
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reaches the surface to manifest defects.  In comparison, hypoplastic defects in Slavonic 

populations from the 9
th

 to 10
th

 centuries AD had a prevalence rate of over 80% in the 

permanent dentition of children.  Because these children had skeletal age determinations of 2 

to 4 years, the defects were described by the authors to indicate weaning stress (Velemínský 

et al., 2009).  Similarly, Saunders and Keenleyside (1999) found the linear enamel 

hypoplasias peaked in the mandibular canine at 3.5 years in the 19
th

 century St. Thomas 

Anglican Church cemetery sample; but they argued that this peak timing had no correlation 

to the cessation of breast feeding or to the weaning process in general, based on isotopic and 

demographic data that suggested that breast feeding duration was 14 months and exogenous 

food was first introduced to infants at circa 5 months.  This research demonstrates that one 

should be careful in assigning surface defects at ages 2.5 – 3 years causally to weaning stress 

only, although it certainly may be an important factor. 

The earliest PS at 5.3 and 6.9 months, may possibly be attributable to weaning stress, 

although it is not known when exogenous foods began to be introduced into the diets of 

nursing infants in Odense.  The mixing of cereal with potentially contaminated water to form 

a gruel during weaning certainly could have made the dietary transition for infants more 

taxing.  Weanling diarrhea, one of the most common causes of acute infant morbidity and 

mortality in living populations, could have resulted in acute disruptions to enamel growth 

(see Simpson, 1999).  The data on peak prevalence of PS suggest that children just under 2 

years old experienced acute stressors in the Black Friars sample while children just under 2 

years to 3.3 years old in the Gray Friars sample experienced acute episodes.  They all 

survived these episodes and manifested surface defects as well, at a mean age peak of 2.5 to 

3.3 years, overlapping with mean ages at peak PS prevalence.  Acute stressors at these ages 
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may be associated with weaning stress, or even the cessation of breastfeeding itself (Dirks et 

al, 2010).  Hanawalt (1993) suggests medieval mothers weaned their children between 1 and 

3 years old, so weaning stress, in combination with a host of other factors, including disease 

and nutrition, could have resulted in a combination of acute and chronic stress indicators.   

Infectious disease stress and starvation 

While it commonly thought that the plague was the most important determinant of 

population devastation and social and economic breakdown in northern Europe, Ormrod and 

Lindley (1996) argue that medieval society had a level of familiarity to the natural and social 

disease of plague, having lived through multiple famines and periods of starvation and 

malnutrition.  While the first devastating episode of plague hit in AD 1348, a second 

outbreak in England occurred in AD1360 and was named the “Children’s Plague,’ after the 

section of the population that it hit hardest.  Overall, the death rate of this second plague 

outbreak was less than the first, and the population growth was essentially halted  Given the 

specific timing of plague outbreaks and the high mortality rate, it is unlikely that any of the 

enamel defects in the Odense populations can be attributed to these specifically to these 

events.  More likely to have been critical in causing acute and chronic stress in Denmark are 

the periodic famines like the Great Famine of AD 1315-1317 and the many famines that 

followed in the 14 century, which entailed crop failure, farm abandonment, and sometimes 

child abandonment. Famine itself is a risk factor for a host of other negative health effects 

and may have been more significant overall than disease waves in impacting the health of 

children.  The effects of starvation on nursing mothers’ ability to produced milk and feed 

their children is certainly a possible cause of infant and toddler nutritional stress that should 

be considered in the timing and prevalence of enamel defects in the Odense groups.  



 

77 

Despite this continual risk of disease, malnutrition, and starvation, more than 85% of 

the skeletal individuals comprising the Odense friary samples survived childhood, providing 

a window for bioarchaeological research on the types of stress they were enduring and 

surviving (continuously chronic with comparatively fewer acute episodes). 

Issues for future research  

One potential issue with the method for calculating crown development may come to 

the lack of being able to detect and count striae of Retzius in the first 10% of DEJ length 

from the cusp, thereby compacting (in small part) the full time to complete development.  

The crown grows very quickly in this area, and the SOR may be difficult to detect due to 

decussation (Risnes, 1986).  It may be useful in the future to compare total cuspal enamel 

formation time estimated by the method of Reid and Dean (2006) to counts of SOR in the 

Black and Gray Friars samples to determine how much time is not accounted for in the first 

10-30% of DEJ height.  Other suggestions for future research include:  (1) as periodicities 

may vary in different parts of the crown (Reid and Ferrell, 2006), it may be beneficial to 

determine periodicities by decile rather than using a modal value as in this study; (2) a larger 

sample size for a population model may be necessary, as the range of SOR counts was 

narrow; and (3) re-evaluation or a relaxation of the criteria for determining what constitute an 

accentual, irregular, or pathological stria of Retzius may be useful, if the conjectures of 

Fitzgerald and Saunders (2005) are correct that significant rod disorganization is not 

necessarily a component of PS.  Finally, a potentially fruitful area of research in the future 

would be to determine if there is a correlation between skeletal pathologies and enamel 

defect prevalence in the friary assemblages to shed further light on the types of physiological 

stressors that medieval children encountered.  Analysis of microdefects in the deciduous 
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dental assemblage would also provide a clearer picture of the timing and etiology of stress, 

particularly in infancy. 
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Appendix A 

 

Tables 

Table 1. Sex and age of individuals from both cemeteries scored for surface defects 

Cemetery 

sample 

No. Adult 

male 

No. Adult 

female 

No. adult 

unknown 

No. juvenile 

(< 15y) Total 
      

Black Friars 102 100 7 25 234 

Gray Friars 74 79 3 20 176 

Combined 176 179 10 45 410 
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Table 2. Surface Defect Prevalence per Cemetery Sample 

Cemetery 

Sample 

No. Individuals 

Scored (n= )
a
 

No. afflicted 

with 1+ defect 

% afflicted with 

1+ defect 
    

Black Friars 234 218 93 

Gray Friars 176 174 99 

Combined 410 392 96 
    

 
a
 One mandibular canine per individual was scored; left canines were sampled preferentially. 
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Table 3. Surface Defect Prevalence per Afflicted Teeth 

Cemetery 

sample 

Mean No. SD 

per tooth SE SD 

Min. No. SD 

per tooth 

Max No. SD 

per tooth 
      

Black Friars 2.69 0.10 1.43 1 7 

Gray Friars 3.72 0.14 1.80 1 9 

Combined 3.15 0.09 1.68 1 9 
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Table 4. Surface Defect Prevalence per All Teeth Scored 

Cemetery 

sample 

Mean No. SD 

per tooth SE SD 

Min. No. SD 

per tooth 

Max No. SD 

per tooth 
      

Black Friars 2.51 0.10 1.54 0 7 

Gray Friars 3.68 0.14 1.83 0 9 

Combined 3.01 0.09 1.77 0 9 
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Table 5. Pathological Stria (PS) Prevalence per Cemetery Sample 

Cemetery 

sample 

No. individuals 

scored (n = )
a
 

No. afflicted 

with 1+ defect 

% afflicted 

with 1+ defect 
    

Black Friars 33 10 30 

Gray Friars 29 6 21 

Combined 62 16 26 
    

 
a
 One mandibular canine per individual was scored; left canines were sampled preferentially. 
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Table 6. Pathological Stria (PS) Prevalence per Afflicted Teeth 

Cemetery sample 

Mean no. PS 

per tooth SE SD 

Min. No. PS 

per tooth 

Max No. PS 

per tooth 
      

Black Friars 1.6 0.34 1.07 1 4 

Gray Friars 1.16 0.17 0.41 1 2 

Combined 1.43 0.22 0.89 1 4 
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Table 7. Pathological Stria (PS) Prevalence per All Teeth Scored 

Cemetery 

sample 

Mean no. PS 

per tooth SE SD 

Min. No. PS 

per tooth 

Max No. PS 

per tooth 
      

Black Friars 0.48 0.16 0.94 0 4 

Gray Friars 0.24 0.09 0.51 0 2 

Combined 0.37 0.10 0.77 0 2 
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Table 8. Sample canines comprising the population model for canine growth 

Grave no Age Sex 

Burial 

location # PS # SD 
      

GP90-090 11.5 J Square C 0 3 

GP90-254 14 J Square D 0 9 

SBT81-015 13 J West Wall 1 2 
      

 

 

 

 



 

87 

Table 9. Striae of Retzius counts in 10% percent increments of DEJ crown height 

Grave no. 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 
           

SBT81-015 0 10 9 10 17 22 36 33 34 22 

GP90-090 0 0 3 11 23 26 27 40 35 25 

GP90-254 0 0 6 6 17 23 38 39 35 23 

           

Mean # SOR 0 3 6 9 19 24 34 37 35 23 
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Table 10. Canine crown development timing based on population model from Gray and 

Black Friars Samples 

% DEJ length 10 20 30 40 50 60 70 80 90 100 
           

Months 0.00 0.80 1.60 2.40 5.07 6.40 9.07 9.87 9.33 6.13 

Cumulative 

months 

0.00 0.80 2.40 4.80 9.87 16.27 25.33 35.20 44.53 50.67 

Chronological age 

(months) 

— 5.30 6.90 9.30 14.37 20.77 29.83 39.70 49.03 55.17 
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Table 11. External and internal positions (mm) of striae of Retzius in the Black Friars sample 

 

External 

position 

Internal 

position 
  

1.38 0.9 

2.09 1.49 

3.57 2.67 

2.44 1.88 

3.49 2.65 

1.92 1.43 

5.9 3.87 

3.53 2.79 

4.57 3.12 

4.78 3.7 

1.91 1.51 

6.03 4.43 

1.93 1.68 

1.46 0.99 

2.33 1.69 

5.22 4.27 

2.61 2 

3.26 2.47 

2.75 2 

5.47 3.7 

3.95 3.26 

7.57 4.71 

5.46 4.07 

2.37 1.86 

4.4 3.43 

3.18 2.64 

1.68 1.16 

2.65 1.94 

8.12 6.32 

3.94 2.98 

4.3 3.41 

4.48 3.5 

6.96 4.44 

5.51 4.64 

8.71 5.42 

5.87 4.34 

2.61 1.97 

6.86 4.75 

5.17 4.39 

3.57 2.37 

2.76 2.21 
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External 

position 

Internal 

position 
  

4.55 3.48 

4.76 3.78 

5.04 3.87 

7.76 4.83 

5.92 4.8 

6.38 4.66 

4.42 3.65 

6.02 4.74 

3.75 2.46 

4.39 3.45 

5 3.84 

4.97 4.06 

6.01 4.4 

7.05 5.81 

4.65 3.84 

7.58 5.58 

4.38 2.92 

5.59 4.27 

5.59 4.15 

5.67 4.65 

7.85 6.13 

4.88 4.06 

6.06 3.71 

6.23 4.78 

6.48 4.71 

6.13 4.92 

8.63 6.64 

6.51 4.23 

6.98 5.2 

7.06 5.12 

6.68 5.33 

8.79 5.03 

7.66 5.69 

8.02 5.55 

7.35 5.73 

5.01 3.32 

7.73 5.74 

8.96 5.96 

7.92 6.15 

9.22 6.14 

8.63 6.36 

9.63 6.32 

10.05 7.09 

2.01 1.42 
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External 

position 

Internal 

position 
  

2.2 1.97 

6.27 3.99 

1.4 1.2 

1.34 1 

5.33 3.63 

3.59 2.99 

3.33 2.72 

2.84 2.25 

3.89 2.94 

3.99 3.33 

1.13 0.85 

6.73 4.7 

4.18 3.49 

8.07 6.56 

2.03 1.26 

1.84 1.41 

2.72 2.02 

3.57 2.41 

3.01 2.48 

2.86 2.39 

1.8 1.5 

1.57 1.23 

4.51 3.46 

3.94 3.2 

5.27 4.64 

2.65 2.27 

4.33 3.26 

5.52 4.41 

9.2 7.15 

3.67 2.76 

2.16 1.62 

4.68 3.7 

2.77 1.84 

5.03 4.14 

3.47 2.94 

3.87 3.26 

2.12 1.72 

5.38 3.91 

4.43 3.65 

9.18 6.76 

3.09 2.56 

2.64 2.06 

6.36 5.06 

9.83 7.68 
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External 

position 

Internal 

position 
  

9.18 6.27 

2.58 1.87 

7.11 5.41 

4.72 3.02 

8.29 6.33 

6.33 5.4 

4.48 3.66 

2.74 2.33 

7.31 4.86 

4.94 4.16 

3.28 2.7 

7.71 5.06 

7.68 5.77 

10.23 7.76 

2.8 2.15 

9.26 6.8 

8.7 6.46 

6.89 5.62 

6.79 4.9 

3.53 3.03 

7.21 5.62 

10.58 8.04 

3.35 2.6 

11.94 8.33 

7.02 5.04 

5.93 4.63 

7.42 5.82 

4.16 3.33 

7.09 5.04 

8.1 6.4 

8.38 6.64 

4.75 3.98 

5.8 4.65 

5.92 4.72 
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Table 12. External and internal positions of striae of Retzius in the Gray Friars sample 

External 

position 

Internal 

position 
  

2.01 1.42 

2.2 1.97 

6.27 3.99 

1.4 1.2 

1.34 1 

5.33 3.63 

3.59 2.99 

3.33 2.72 

2.84 2.25 

3.89 2.94 

3.99 3.33 

1.13 0.85 

6.73 4.7 

4.18 3.49 

8.07 6.56 

2.03 1.26 

1.84 1.41 

2.72 2.02 

3.57 2.41 

3.01 2.48 

2.86 2.39 

1.8 1.5 

1.57 1.23 

4.51 3.46 

3.94 3.2 

5.27 4.64 

2.65 2.27 

4.33 3.26 

5.52 4.41 

9.2 7.15 

3.67 2.76 

2.16 1.62 

4.68 3.7 

2.77 1.84 

5.03 4.14 

3.47 2.94 

3.87 3.26 

2.12 1.72 

5.38 3.91 

4.43 3.65 

9.18 6.76 

3.09 2.56 
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External 

position 

Internal 

position 
  

2.64 2.06 

6.36 5.06 

9.83 7.68 

9.18 6.27 

2.58 1.87 

7.11 5.41 

4.72 3.02 

8.29 6.33 

6.33 5.4 

4.48 3.66 

2.74 2.33 

7.31 4.86 

4.94 4.16 

3.28 2.7 

7.71 5.06 

7.68 5.77 

10.23 7.76 

2.8 2.15 

9.26 6.8 

8.7 6.46 

6.89 5.62 

6.79 4.9 

3.53 3.03 

7.21 5.62 

10.58 8.04 

3.35 2.6 

11.94 8.33 

7.02 5.04 

5.93 4.63 

7.42 5.82 

4.16 3.33 

7.09 5.04 

8.1 6.4 

8.38 6.64 

4.75 3.98 

5.8 4.65 

5.92 4.72 
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Table 13. Distance functions for each sample and combined samples 

Sample  Quadratic regression σ r 
    

Black Friars y = -.353 + .970x - .027x2 0.347 0.970 

Gray Friars y = -.038 + .831x - .009x2 0.292 0.988 

Combined 

samples 

y = -.052 + .832x - .011x2 0.343 0.980 
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Table 14. External and converted internal locations (mm) of enamel surface defects (SD) in the Black Friars dental sample using the 

regression formula developed from Black Friars striae of Retzius data 

Individual # SD SD1 Ext SD1 Int SD2 Ext SD2 Int SD3 Ext SD3 Int SD4 Ext SD4 Int SD5 Ext SD5 Int SD6 Ext SD6 Int SD7 Ext SD7 Int 
                

SBT78-010 2 3.80 2.94 4.60 3.54           

SBT78-011 0               

SBT78-017 0               

SBT78-018 3 0.70 0.31 4.00 3.10 5.45 4.13         

SBT78-022 3 2.25 1.69 3.36 2.60 4.74 3.64         

SBT78-025 0               

SBT78-027 1 5.78 4.35             

SBT78-028 2 4.55 3.50 5.77 4.34           

SBT78-029 3 1.10 0.68 2.91 2.24 4.98 3.81         

SBT78-031 3 4.00 3.10 4.30 3.32 5.40 4.10         

SBT78-037 3 2.30 1.74 4.43 3.41 5.30 4.03         

SBT78-044 2 3.10 2.39 4.82 3.70           

SBT78-047 4 1.62 1.15 2.14 1.60 4.25 3.28 5.00 3.82       

SBT78-049 2 5.30 4.03 6.85 5.02           

SBT78-051 3 1.75 1.26 3.90 3.02 6.00 4.50         

SBT78-055 3 2.45 1.86 3.00 2.31 5.75 4.33         

SBT78-056 1 3.80 2.94             

SBT78-083 0               

SBT78-085 2 2.78 2.13 8.25 5.81           

SBT78-200 2 3.82 2.96 6.75 4.96           

SBT78-201 1 4.75 3.65             

SBT78-202 2 4.71 3.62 7.02 5.13           

SBT79-003 1 1.63 1.16             

SBT79-004 0               

SBT79-005 6 2.31 1.74 2.90 2.23 4.90 3.75 6.05 4.53 8.00 5.68 9.33 6.35   

SBT79-009 6 2.48 1.89 4.55 3.50 5.35 4.06 5.91 4.44 6.65 4.90 7.30 5.29   

SBT79-011 3 4.35 3.36 5.40 4.10 6.06 4.53         

SBT79-014 3 4.07 3.15 4.86 3.72 6.10 4.56         

SBT79-017 2 5.55 4.20 6.25 4.65           

SBT79-018 2 5.17 3.94 8.95 6.17           

SBT79-020 3 3.86 2.99 6.35 4.72 6.67 4.92         

SBT79-021 4 2.30 1.74 2.90 2.23 3.65 2.83 4.80 3.68       

SBT79-022 1 5.40 4.10             

SBT79-027 2 3.32 2.57 5.13 3.91           

SBT79-029 3 1.29 0.85 4.05 3.13 6.37 4.73         

SBT79-030 3 2.95 2.27 5.45 4.13 5.90 4.43         

SBT79-031 1 4.10 3.17             
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Individual # SD SD1 Ext SD1 Int SD2 Ext SD2 Int SD3 Ext SD3 Int SD4 Ext SD4 Int SD5 Ext SD5 Int SD6 Ext SD6 Int SD7 Ext SD7 Int 
                

SBT81-001 2 6.40 4.75 7.48 5.39           

SBT81-005 2 4.05 3.13 7.27 5.27           

SBT81-015 2 4.50 3.47 6.17 4.60           

SBT81-019 1 4.17 3.22             

SBT81-023 0               

SBT81-034 1 4.17 3.22             

SBT81-035 1 7.13 5.19             

SBT81-047 1 1.75 1.26             

SBT81-

050b 

2 4.05 3.13 6.03 4.51           

SBT81-053 4 3.17 2.45 4.71 3.62 5.75 4.33 6.91 5.06       

SBT81-054 2 4.25 3.28 5.70 4.30           

SBT81-056 5 2.40 1.82 5.67 4.28 6.84 5.02 7.09 5.17 9.07 6.22     

SBT81-060 2 3.59 2.78 4.85 3.72           

SBT81-062 2 2.11 1.57 4.60 3.54           

SBT81-069 4 2.00 1.48 3.15 2.43 4.60 3.54 6.00 4.50       

SBT81-075 1 4.89 3.74             

SBT81-078 1 5.01 3.83             

SBT81-085 1 7.28 5.28             

SBT81-089 3 4.30 3.32 6.43 4.77 8.50 5.94         

SBT81-094 2 4.59 3.53 6.30 4.69           

SBT81-099 3 2.65 2.03 3.21 2.48 4.30 3.32         

SBT81-100 3 2.00 1.48 4.88 3.74 8.39 5.88         

SBT81-104 3 3.61 2.80 5.23 3.98 6.00 4.50         

SBT81-108 1 6.51 4.82             

SBT81-117 0               

SBT81-119 2 3.20 2.47 4.31 3.33           

SBT81-132 3 3.62 2.80 5.15 3.93 6.45 4.78         

SBT81-134 2 2.95 2.27 3.72 2.88           

SBT81-153 3 2.50 1.90 3.59 2.78 5.05 3.86         

SBT81-160 1 4.30 3.32             

SBT81-168 2 2.81 2.16 4.05 3.13           

SBT81-183 0               

SBT81-188 1 3.35 2.59             

SBT81-193 2 2.90 2.23 5.15 3.93           

SBT81-195 1 5.28 4.02             

SBT81-203 2 2.92 2.25 3.90 3.02           

SBT81-205 2 4.10 3.17 5.20 3.96           

SBT81-207 1 2.50 1.90             

SBT81-212 3 2.10 1.56 4.20 3.24 5.20 3.96         

SBT81-214 4 1.60 1.13 3.50 2.71 5.45 4.13 6.50 4.81       
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Individual # SD SD1 Ext SD1 Int SD2 Ext SD2 Int SD3 Ext SD3 Int SD4 Ext SD4 Int SD5 Ext SD5 Int SD6 Ext SD6 Int SD7 Ext SD7 Int 
                

SBT81-215 2 2.91 2.24 5.71 4.31           

SBT81-218 5 2.45 1.86 3.30 2.55 4.55 3.50 6.45 4.78 7.85 5.60     

SBT81-

218x 

2 3.20 2.47 4.85 3.72           

SBT81-219 2 3.85 2.98 5.04 3.85           

SBT81-222 4 1.85 1.35 4.50 3.47 6.35 4.72 7.95 5.65       

SBT81-223 5 0.71 0.32 1.32 0.88 3.30 2.55 5.50 4.17 6.75 4.96     

SBT81-231 1 4.20 3.24             

SBT81-234 3 2.20 1.65 3.10 2.39 4.15 3.21         

SBT81-235 2 3.95 3.06 7.65 5.49           

SBT81-236 3 4.25 3.28 5.91 4.44 8.45 5.92         

SBT81-241 1 2.44 1.85             

SBT81-244 4 2.39 1.81 4.55 3.50 6.14 4.58 6.83 5.01       

SBT81-248 5 2.95 2.27 4.25 3.28 4.90 3.75 6.20 4.62 6.74 4.96     

SBT81-251 0               

SBT81-253 1 4.99 3.81             

SBT81-256 3 2.60 1.99 3.69 2.86 5.22 3.97         

SBT81-266 3 3.82 2.96 5.72 4.31 6.08 4.55         

SBT81-271 4 1.10 0.68 1.70 1.22 5.70 4.30 6.90 5.05       

SBT81-281 1 3.87 3.00             

SBT81-282 0               

SBT81-283 2 4.50 3.47 5.60 4.23           

SBT81-289 3 2.22 1.67 3.21 2.48 3.51 2.72         

SBT81-291 2 3.05 2.35 6.60 4.87           

SBT81-292 3 2.00 1.48 2.92 2.25 4.20 3.24         

SBT81-294 2 2.83 2.18 5.32 4.04           

SBT81-295 4 3.20 2.47 4.18 3.23 5.52 4.18 6.70 4.93       

SBT81-296 4 1.20 0.77 2.50 1.90 3.70 2.87 5.05 3.86       

SBT81-297 4 2.10 1.56 3.35 2.59 4.35 3.36 6.00 4.50       

SBT81-299 2 2.51 1.91 3.15 2.43           

SBT81-307 3 1.92 1.41 2.83 2.18 4.20 3.24         

SBT81-308 6 0.90 0.50 2.58 1.97 3.20 2.47 3.60 2.79 4.10 3.17 5.12 3.91   

SBT81-310 3 2.45 1.86 2.92 2.25 4.70 3.61         

SBT81-312 1 2.45 1.86             

SBT81-313 3 2.15 1.61 4.01 3.10 5.95 4.46         

SBT81-

314x 

3 3.20 2.47 4.60 3.54 12.50 7.55         

SBT81-316 2 3.98 3.08 5.85 4.40           

SBT81-320 1 4.41 3.40             

SBT81-326 0               

SBT81-328 3 3.60 2.79 5.80 4.36 7.85 5.60         



 

 

9
9
 

Individual # SD SD1 Ext SD1 Int SD2 Ext SD2 Int SD3 Ext SD3 Int SD4 Ext SD4 Int SD5 Ext SD5 Int SD6 Ext SD6 Int SD7 Ext SD7 Int 
                

SBT81-331 2 2.20 1.65 5.75 4.33           

SBT81-334 4 4.10 3.17 5.00 3.82 7.70 5.52 10.00 6.65       

SBT81-337 4 2.00 1.48 3.30 2.55 4.50 3.47 5.00 3.82       

SBT81-339 1 6.00 4.50             

SBT81-340 2 1.00 0.59 3.65 2.83           

SBT81-344 4 2.68 2.05 4.20 3.24 5.71 4.31 7.10 5.17       

SBT81-345 1 3.20 2.47             

SBT81-346 1 5.90 4.43             

SBT81-349 2 3.31 2.56 4.50 3.47           

SBT81-351 0               

SBT81-353 1 3.00 2.31             

SBT81-354 1 3.75 2.90             

SBT81-355 2 5.75 4.33 6.45 4.78           

SBT81-357 2 2.10 1.56 3.30 2.55           

SBT81-358 2 3.30 2.55 4.35 3.36           

SBT81-359 2 2.80 2.15 4.95 3.79           

SBT81-362 2 4.70 3.61 6.25 4.65           

SBT81-367 3 4.60 3.54 6.30 4.69 8.10 5.73         

SBT81-371 3 2.40 1.82 3.05 2.35 6.53 4.83         

SBT81-372 6 3.70 2.87 4.70 3.61 5.50 4.17 6.35 4.72 7.15 5.20 7.95 5.65   

SBT81-374 2 2.47 1.88 4.60 3.54           

SBT81-378 5 2.20 1.65 3.60 2.79 5.60 4.23 6.70 4.93 7.62 5.47     

SBT81-381 1 2.50 1.90             

SBT81-382 2 4.20 3.24 5.50 4.17           

SBT81-383 4 3.45 2.67 5.10 3.89 6.63 4.89 7.42 5.36       

SBT81-386 4 2.65 2.03 3.81 2.95 5.30 4.03 6.20 4.62       

SBT81-395 3 2.25 1.69 3.95 3.06 5.00 3.82         

SBT81-400 1 4.40 3.39             

SBT81-403 7 2.92 2.25 4.10 3.17 4.36 3.36 5.35 4.06 6.60 4.87 8.25 5.81 8.90 6.14 

SBT81-409 5 2.75 2.11 3.60 2.79 4.40 3.39 5.22 3.97 5.78 4.35     

SBT81-434 2 2.15 1.61 3.10 2.39           

SBT81-437 1 4.10 3.17             

SBT81-439 1 2.50 1.90             

SBT81-442 2 3.60 2.79 5.80 4.36           

SBT81-446 5 1.50 1.04 2.35 1.78 3.15 2.43 4.50 3.47 5.90 4.43     

SBT81-457 3 2.61 1.99 5.75 4.33 7.69 5.51         

SBT81-459 6 4.02 3.11 5.00 3.82 6.00 4.50 6.95 5.08 8.10 5.73 9.10 6.24   

SBT81-

460x 

1 4.45 3.43             

SBT81-462 3 3.60 2.79 3.80 2.94 4.48 3.45         

SBT81-464 2 4.45 3.43 5.30 4.03           
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Individual # SD SD1 Ext SD1 Int SD2 Ext SD2 Int SD3 Ext SD3 Int SD4 Ext SD4 Int SD5 Ext SD5 Int SD6 Ext SD6 Int SD7 Ext SD7 Int 
                

SBT81-465 2 1.40 0.95 4.68 3.60           

SBT81-468 2 4.00 3.10 5.72 4.31           

SBT81-470 7 2.50 1.90 3.25 2.51 4.49 3.46 6.10 4.56 6.80 4.99 7.65 5.49 9.90 6.60 

SBT81-471 1 6.60 4.87             

SBT81-472 1 4.45 3.43             

SBT81-478 2 3.10 2.39 7.25 5.26           

SBT81-479 1 5.00 3.82             

SBT81-483 3 2.60 1.99 5.03 3.84 6.10 4.56         

SBT81-484 0               

SBT81-491 3 3.80 2.94 5.20 3.96 6.43 4.77         

SBT81-496 1 5.50 4.17             

SBT81-499 4 1.72 1.24 7.00 5.11 7.60 5.46 9.30 6.33       

SBT81-502 1 3.30 2.55             

SBT81-503 2 5.02 3.84 6.35 4.72           

SBT81-505 4 2.50 1.90 3.10 2.39 5.02 3.84 6.70 4.93       

SBT81-506 2 4.21 3.25 5.35 4.06           

SBT81-511 1 4.20 3.24             

SBT81-513 1 1.30 0.86             

SBT81-515 1 2.91 2.24             

SBT81-516 4 2.90 2.23 4.50 3.47 5.60 4.23 7.10 5.17       

SBT81-519 3 2.30 1.74 4.31 3.33 5.31 4.04         

SBT81-522 1 4.21 3.25             

SBT81-524 4 2.12 1.58 3.28 2.54 4.31 3.33 6.22 4.64       

SBT81-525 0               

SBT81-530 3 1.65 1.17 3.18 2.46 5.50 4.17         

SBT81-531 3 3.59 2.78 5.50 4.17 7.10 5.17         

SBT81-534 2 3.70 2.87 5.84 4.39           

SBT81-538 7 2.50 1.90 3.45 2.67 4.50 3.47 5.01 3.83 5.35 4.06 6.84 5.02 7.90 5.62 

SBT81-546 2 5.40 4.10 8.20 5.79           

SBT81-550 2 4.35 3.36 6.81 5.00           

SBT81-552 5 0.95 0.54 2.51 1.91 3.25 2.51 5.02 3.84 6.63 4.89     

SBT81-553 4 1.25 0.82 2.00 1.48 6.35 4.72 8.25 5.81       

SBT81-559 6 3.10 2.39 4.18 3.23 4.35 3.36 4.78 3.67 5.80 4.36 7.00 5.11   

SBT81-561 2 3.20 2.47 5.20 3.96           

SBT81-562 4 2.80 2.15 3.30 2.55 4.40 3.39 7.70 5.52       

SBT81-563 0               

SBT81-564 5 0.40 0.03 1.40 0.95 2.90 2.23 4.30 3.32 5.60 4.23     

SBT81-566 1 5.00 3.82             

SBT81-567 5 1.40 0.95 2.80 2.15 3.40 2.63 4.50 3.47 5.25 4.00     

SBT81-568 1 4.71 3.62             

SBT81-570 5 0.70 0.31 1.95 1.44 4.23 3.27 5.10 3.89 6.50 4.81     
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Individual # SD SD1 Ext SD1 Int SD2 Ext SD2 Int SD3 Ext SD3 Int SD4 Ext SD4 Int SD5 Ext SD5 Int SD6 Ext SD6 Int SD7 Ext SD7 Int 
                

SBT81-577 2 1.55 1.09 3.10 2.39           

SBT81-578 5 2.20 1.65 4.40 3.39 5.70 4.30 7.20 5.23 8.43 5.91     

SBT81-579 4 4.92 3.77 6.40 4.75 7.00 5.11 8.20 5.79       

SBT81-580 3 2.00 1.48 2.95 2.27 3.70 2.87         

SBT81-581 4 2.90 2.23 4.10 3.17 6.20 4.62 8.31 5.84       

SBT81-582 4 2.80 2.15 4.05 3.13 5.70 4.30 7.10 5.17       

SBT81-584 1 4.20 3.24             

SBT81-587 5 2.60 1.99 4.28 3.30 5.20 3.96 5.62 4.25 6.41 4.76     

SBT81-592 1 3.30 2.55             

SBT81-593 3 3.45 2.67 4.95 3.79 9.55 6.45         

SBT81-595 5 2.10 1.56 3.10 2.39 4.60 3.54 5.30 4.03 5.85 4.40     

SBT81-597 4 4.70 3.61 2.90 2.23 6.10 4.56 8.10 5.73       

SBT81-598 1 4.00 3.10             

SBT81-600 1 4.90 3.75             

SBT81-602 3 3.05 2.35 4.80 3.68 5.25 4.00         

SBT81-605 3 2.58 1.97 3.90 3.02 6.10 4.56         

SBT81-607 3 4.20 3.24 6.60 4.87 7.85 5.60         

SBT81-616 2 2.05 1.52 3.22 2.49           

SBT81-617 5 2.60 1.99 2.90 2.23 5.20 3.96 5.82 4.38 6.21 4.63     

SBT81-625 2 5.70 4.30 8.25 5.81           

SBT81-626 3 2.15 1.61 4.20 3.24 5.95 4.46         

SBT81-630 3 2.45 1.86 4.50 3.47 6.35 4.72         

SBT81-633 5 2.85 2.19 4.10 3.17 5.45 4.13 6.20 4.62 6.70 4.93     

SBT81-637 1 4.40 3.39             

SBT81-639 3 3.05 2.35 6.30 4.69 7.43 5.36         

SBT81-641 2 3.12 2.41 4.30 3.32           

SBT81-643 3 1.67 1.19 2.60 1.99 3.80 2.94         

SBT81-644 1 5.03 1.90             

SBT81-651 3 2.50 1.90 3.59 2.78 6.10 4.56         

SBT81-657 0               

SBT81-659 3 2.58 1.97 3.79 2.94 5.05 3.86         

SBT81-661 4 1.30 0.86 3.00 2.31 4.80 3.68 5.50 4.17       

SBT81-665 5 1.45 1.00 2.30 1.74 3.35 2.59 4.81 3.69 6.82 5.01     

SBT81-670 2 3.25 2.51 4.33 3.34           

SBT81-671 3 4.40 3.39 4.95 3.79 7.90 5.62         

SBT81-674 2 6.05 4.53 7.81 5.58           

SBT81-679 6 2.21 1.66 2.92 2.25 3.70 2.87 4.30 3.32 5.30 4.03 6.11 4.57   
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Table 15. External and converted internal locations (mm) of enamel hypoplasias in the Gray Friars sample 

Individual 

SD1 

Ext 

SD1 

Int 

SD2 

Ext 

SD2 

Int 

SD3 

Ext 

SD3 

Int 

SD4 

Ext 

SD4 

Int 

SD5 

Ext 

SD5 

Int 

SD6 

Ext 

SD6 

Int 

SD7 

Ext 

SD7 

Int 

SD8 

Ext 

SD8 

Int 

SD9 

Ext 

SD9 

Int 
                   

GBP82-003 1.9 1.49 2.7 2.11 3.9 3.03 5.45 4.16 6.3 4.75                 

GBP82-006 1.1 0.85 2.5 1.96 3.5 2.73 4 3.10 5.2 3.98 6.25 4.72 6.95 5.20         

GBP82-008 4.25 3.29 7.5 5.57 8.42 6.17                         

GBP82-009 1.8 1.41 2.8 2.19 4 3.10 4.98 3.82 5.5 4.19 6.93 5.19 8.8 6.42         

GBP82-014 2.6 2.04 5.2 3.98 6.6 4.96                         

GBP82-019 5.1 3.91                                 

GBP82-020 2.54 1.99 4.6 3.54 5.32 4.06 6 4.54                     

GBP82-026 3.2 2.50 3.7 2.88 4.45 3.43 5.09 3.90 5.55 4.23 5.89 4.47 7.27 5.42         

GBP82-028 1.9 1.49 5.8 4.40 6.91 5.17                         

GP90-002 2.83 2.21 5.05 3.87                             

GP90-011 2.85 2.23 4.2 3.25 6.35 4.79                         

GP90-014 3.07 2.40 4.55 3.51 5.52 4.21 0.62 0.46 1.15 0.89 0.62 0.46             

GP90-017 3.21 2.51                                 

GP90-021 1.22 0.95 2.85 2.23 4 3.10                         

GP90-022 2 1.57 3.63 2.82 6.5 4.89                         

GP90-023 3.2 2.50 4.35 3.36                             

GP90-024 1.8 1.41 3.71 2.88 6.18 4.67                         

GP90-028 1.7 1.33 2.2 1.73 2.92 2.28                         

GP90-029 1.52 1.19 2.31 1.81 3.5 2.73 5 3.83                     

GP90-030 3.2 2.50                                 

GP90-034 1 0.77 2.2 1.73 3.1 2.42 7.21 5.37                     

GP90-040 1.1 0.85 4.7 3.62                             

GP90-041 2.1 1.65 3.2 2.50                             

GP90-044 2.74 2.15 3.5 2.73 5.2 3.98 6.65 4.99                     

GP90-045 2.71 2.12 3.3 2.57                             

GP90-046 1.3 1.01 2.55 2.00 4 3.10                         

GP90-048 0.88 0.67 1.85 1.45 3.2 2.50 4.5 3.47                     

GP90-051 1.5 1.17 2.18 1.71 4.4 3.40 5.68 4.32 7.6 5.64                 

GP90-053 2.9 2.27 3.98 3.09 5.1 3.91 6.1 4.61 7.4 5.50                 

GP90-055 1.68 1.31 2.56 2.01 3.44 2.68 5.41 4.13                     

GP90-058 2.2 1.73 3.95 3.06 4.8 3.69                         

GP90-059 2.41 1.89 3 2.35 3.89 3.02 5.2 3.98 7.08 5.29                 

GP90-065 2.41 1.89 3.88 3.01                             

GP90-066 1.2 0.93 2.22 1.74 3.7 2.88 5.05 3.87                     

GP90-070 1.4 1.09 3.2 2.50                             

GP90-071 1.7 1.33 3.15 2.46 5.05 3.87                         

GP90-072 2.9 2.27 4.3 3.32                             
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GP90-073 1.9 1.49 3.45 2.69                             

GP90-079 3.9 3.03                                 

GP90-088 2.75 2.15 3.4 2.65 4.55 3.51 6.23 4.70                     

GP90-090 2.3 1.80 5.4 4.12 7.45 5.54                         

GP90-096 2.2 1.73 6.1 4.61                             

GP90-099 2.55 2.00                                 

GP90-100 1.75 1.37 2.4 1.88 3.75 2.91 4.63 3.56                     

GP90-102 1.45 1.13                                 

GP90-108 2 1.57 3.1 2.42 4.7 3.62 6.25 4.72                     

GP90-110 1.9 1.49 2.65 2.08 3.31 2.58 3.96 3.07 4.4 3.40 4.95 3.80 5.91 4.48 7.4 5.50     

GP90-111 2.4 1.88 3.95 3.06                             

GP90-116 1.2 0.93 2.35 1.84 2.91 2.28                         

GP90-124 1.1 0.85 1.8 1.41 2.13 1.67 3.79 2.94 4.21 3.26 4.86 3.73             

GP90-128 1.9 1.49 2.6 2.04 3.61 2.81 5.4 4.12                     

GP90-129 2.28 1.79                                 

GP90-130 2.1 1.65 3.5 2.73 4.6 3.54 5.1 3.91 6.1 4.61 6.58 4.95             

GP90-131 2.2 1.73 3.1 2.42 5.1 3.91                         

GP90-135 0.6 0.44 1.9 1.49 3.05 2.38 3.7 2.88 4.05 3.14 4.5 3.47 5.7 4.33 7 5.23     

GP90-138 1.35 1.05 3 2.35 4.6 3.54                         

GP90-141 2.8 2.19 6.38 4.81                             

GP90-143 0.91 0.70 2.42 1.90 4.25 3.29                         

GP90-150 2.9 2.27 4.1 3.17 5.13 3.93 6.42 4.84 7.1 5.30                 

GP90-153 2.2 1.73 3.89 3.02 5 3.83 5.7 4.33 6.9 5.17                 

GP90-156 2.48 1.94 3.35 2.61 6.8 5.10 8 5.90                     

GP90-157 1.1 0.85 2 1.57 3.75 2.91                         

GP90-160 1.03 0.79 2 1.57 3 2.35                         

GP90-170 2.03 1.59 3.3 2.57 5 3.83                         

GP90-173 2.35 1.84 3.9 3.03 5 3.83 7 5.23                     

GP90-174 1.4 1.09 2.9 2.27                             

GP90-175 0.52 0.38 1.11 0.86 1.8 1.41 2.9 2.27 3.7 2.88 5.6 4.26 6.7 5.03         

GP90-178 2.1 1.65 3.33 2.60 4.9 3.76                         

GP90-182 3 2.35 3.8 2.95 5.4 4.12 6.92 5.18                     

GP90-183 2 1.57 2.6 2.04 3.32 2.59 4 3.10                     

GP90-185 1.92 1.50 3.2 2.50                             

GP90-191 1.4 1.09 2.3 1.80 4.2 3.25 6.29 4.75                     

GP90-193 2.05 1.61 2.7 2.11 3.95 3.06 5 3.83 5.35 4.08 6.05 4.58 7 5.23         

GP90-194 2.8 2.19 3.9 3.03 5.4 4.12 7 5.23                     

GP90-199 1.43 1.12 3.3 2.57 4.2 3.25 5.3 4.05                     

GP90-202 0.8 0.61 2.1 1.65 3.25 2.54                         

GP90-204 0.7 0.53 1.45 1.13 2.02 1.58 3.91 3.03 6.4 4.82                 
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GP90-205 4 3.10                                 

GP90-211 2.9 2.27 3.8 2.95                             

GP90-213 1.9 1.49 3.05 2.38                             

GP90-216 1.33 1.04 1.79 1.40 2.41 1.89 3.25 2.54                     

GP90-217 2.9 2.27 4.38 3.38                             

GP90-220 3.1 2.42 5.5 4.19 6.3 4.75 7.8 5.77                     

GP90-221 1.27 0.99 2.65 2.08 3.71 2.88                         

GP90-224 2.2 1.73 3.57 2.78 4.05 3.14                         

GP90-225 2 1.57 3.55 2.76 5.5 4.19                         

GP90-227 4.94 3.79 6.2 4.68 6.89 5.16                         

GP90-228 1.55 1.21 2.41 1.89 3.2 2.50                         

GP90-230 1.6 1.25 2.05 1.61 3.13 2.44                         

GP90-232x 3 2.35                                 

GP90-235 1.31 1.02 2.42 1.90 3.13 2.44 4.35 3.36 5.42 4.13                 

GP90-236 0.8 0.61 1.7 1.33 5.52 4.21 7.1 5.30                     

GP90-238 1.9 1.49 2.32 1.82                             

GP90-241 3.1 2.42 3.75 2.91                             

GP90-248 1.81 1.42 2.94 2.30 3.9 3.03 5.1 3.91 6.5 4.89                 

GP90-254 1.7 1.33 2.55 2.00 2.93 2.29 3.5 2.73 4.34 3.35 5.5 4.19 6.18 4.67 8 5.90     

GP90-255 0.7 0.53 1.65 1.29 2.84 2.22 3.92 3.04                     

GP90-262 3.7 2.88                                 

GP90-263 1.4 1.09 1.9 1.49 2.57 2.01 3.05 2.38 3.35 2.61 4.15 3.21 5.42 4.13 6.72 5.04     

GP90-267 2.03 1.59 3.3 2.57 4.4 3.40 5.4 4.12                     

GP90-272 2.6 2.04 3.4 2.65                             

GP90-273 2.8 2.19 3.65 2.84 4.6 3.54                         

GP90-275 2.14 1.68 3.1 2.42 4.55 3.51                         

GP90-279 0.4 0.28 0.9 0.69 1.52 1.19 2.5 1.96 4.95 3.80                 

GP90-280 3 2.35 3.5 2.73 4 3.10 4.5 3.47                     

GP90-280x 1.9 1.49 2.7 2.11                             

GP90-281 3.45 2.69 4.5 3.47 5.5 4.19                         

GP90-282 2.19 1.72 4.3 3.32 6 4.54                         

GP90-283 2.05 1.61 5.52 4.21                             

GP90-294 0.3 0.20 1.37 1.07 3.1 2.42                         

GP90-296 1.1 0.85 2.1 1.65 2.9 2.27 5.93 4.49                     

GP90-297 1.3 1.01 2.52 1.97 3.96 3.07                         

GP90-300 0.55 0.40 1.6 1.25 2.4 1.88 3.4 2.65                     

GP90-301 2 1.57 2.62 2.05 3.1 2.42 4.9 3.76                     

GP90-302 1.8 1.41 3.4 2.65 4.55 3.51 5.61 4.27                     

GP90-304 1.46 1.14 2.45 1.92 4.5 3.47                         

GP90-309 1.45 1.13 2.43 1.90 4 3.10                         



 

 

1
0
5
 

Individual 

SD1 

Ext 

SD1 

Int 

SD2 

Ext 

SD2 

Int 

SD3 

Ext 

SD3 

Int 

SD4 

Ext 

SD4 

Int 

SD5 

Ext 

SD5 

Int 

SD6 

Ext 

SD6 

Int 

SD7 

Ext 

SD7 

Int 

SD8 

Ext 

SD8 

Int 

SD9 

Ext 

SD9 

Int 
                   

GP90-315 2.45 1.92 3.75 2.91                             

GP90-317 2.41 1.89 4 3.10 5.55 4.23 6.4 4.82                     

GP90-319 1.98 1.55 3.2 2.50 3.69 2.87 4.2 3.25 4.7 3.62 5.1 3.91             

GP90-320 1.1 0.85 2.8 2.19 5.35 4.08 6.4 4.82                     

GP90-321 1.3 1.01 3.15 2.46 4.5 3.47                         

GP90-322 0.7 0.53 1.7 1.33 3 2.35 5.2 3.98 6.81 5.10                 

GP90-324 1.6 1.25 5.4 4.12                             

GP90-326 2.49 1.95 3.34 2.60 4.15 3.21 6.28 4.74                     

GP90-327 2.3 1.80 3 2.35 3.41 2.66 3.91 3.03 4.71 3.62 6.7 5.03             

GP90-328 1.8 1.41 5.31 4.06                             

GP90-329 1.82 1.43 2.67 2.09 3.6 2.80 5 3.83 7.2 5.37 7.6 5.64             

GP90-330 2.5 1.96 5.3 4.05                             

GP90-331 2.9 2.27                                 

GP90-333 2.73 2.14 4.21 3.26 5.07 3.88 6.4 4.82                     

GP90-334 1.7 1.33 2.95 2.31 3.55 2.76 4 3.10 5.87 4.45 7.3 5.44             

GP90-337 3.05 2.38 3.6 2.80 5.42 4.13 7 5.23 7.78 5.76                 

GP90-338 1.25 0.97 1.82 1.43 2.36 1.85 4.3 3.32 7.1 5.30                 

GP90-339 2.6 2.04 4 3.10 4.52 3.48 7.45 5.54                     

GP90-349 2.7 2.11 3.3 2.57                             

GP90-350 2.88 2.25 4.29 3.31 5.62 4.28 7 5.23                     

GP90-365 2.3 1.80 2.71 2.12 4.7 3.62 5.53 4.21 6.5 4.89 7.1 5.30             

GP90-367 1.3 1.01 2.62 2.05 4.71 3.62 6.3 4.75                     

GP90-376 4.3 3.32 7.51 5.58 8.3 6.10                         

GP90-377 1.11 0.86 1.9 1.49 3.21 2.51 4.61 3.55 5.51 4.20 6.9 5.17             

GP90-379 1.1 0.85 2.4 1.88 4.6 3.54 6.5 4.89                     

GP90-380 2.2 1.73 3.69 2.87                             

GP90-382 2.3 1.80 3.1 2.42 3.6 2.80 4.61 3.55                     

GP90-384 2.35 1.84 3.6 2.80 4.65 3.58                         

GP90-387 1.71 1.34 3.2 2.50 4.4 3.40                         

GP90-391 1.11 0.86 2.8 2.19 5.1 3.91                         

GP90-395 0.8 0.61 1.9 1.49 2.7 2.11 3.15 2.46 4.25 3.29 5.22 3.99 6.7 5.03 7.8 5.77     

GP90-396 3.1 2.42 3.7 2.88 4.15 3.21 4.6 3.54 5.65 4.30 6.35 4.79 7.45 5.54         

GP90-398 1.3 1.01 2.2 1.73 3.45 2.69 5.6 4.26                     

GP90-399 2.2 1.73 2.85 2.23 3.2 2.50 4 3.10 5.2 3.98 7.3 5.44 7.71 5.71         

GP90-400 0.4 0.28 1.38 1.08 2.8 2.19 3.65 2.84 4.5 3.47 5.2 3.98 5.97 4.52 8.6 6.29 9.8 7.05 

GP90-401 3.4 2.65 3.8 2.95 4.82 3.70 6.2 4.68 6.9 5.17                 

GP90-403 1.2 0.93 2.4 1.88 3.63 2.82 3.87 3.00 5.4 4.12                 

GP90-405 1.8 1.41 3.1 2.42                             

GP90-406 2.1 1.65 6.3 4.75                             

GP90-410 1.12 0.87 3.4 2.65 6.5 4.89 7.7 5.70                     
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GP90-421 1.5 1.17 4.6 3.54 5.9 4.47                         

GP90-423 0.6 0.44 2.9 2.27 3.6 2.80 4.93 3.78 5.7 4.33 6.1 4.61 6.31 4.76 7.5 5.57     

GP90-440 2.6 2.04 3.71 2.88 5.13 3.93                         

GP90-446 1.3 1.01 2.95 2.31 4.51 3.48                         

GP90-447 0.4 0.28 0.85 0.65 1.5 1.17 2.45 1.92 3.5 2.73 4.93 3.78             

GP90-449 1.95 1.53 3 2.35 3.5 2.73                         

GP90-451 2.8 2.19 3.44 2.68 5.61 4.27                         

GP90-459 2.5 1.96 3.6 2.80 4.5 3.47 5.05 3.87 5.8 4.40 7.5 5.57 8 5.90 8.7 6.35     

GP90-464 11.11 7.83 2.3 1.80 2.62 2.05 3 2.35 3.36 2.62 3.72 2.89 5.1 3.91 6 4.54 6.7 5.03 

GP90-473 2.4 1.88 3.1 2.42 4.1 3.17                         

GP90-479 2.85 2.23 4.4 3.40 6.4 4.82 7.8 5.77 8.5 6.23                 

GP90-480 4.3 3.32                                 

GP90-487 1.5 1.17 2 1.57 2.95 2.31 4.9 3.76                     

GP90-488 1.8 1.41 4 3.10 5.6 4.26                         

GP90-489 4.9 3.76                                 

GP90-494 0.5 0.36 1 0.77 1.8 1.41 2.8 2.19 4.35 3.36 6.05 4.58 7 5.23         
                   

 

Note. External locations were measured from the cervical edge of the defect to the tooth’s cervix in millimeters. External locations 

were transformed into internal locations by using the quadratic function for the sample. SD stands for surface defect. 
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Table 16. Absolute locations of pathological striae (PS) in the Black Friars sample measured from the cervico-enamel junction 

ID Age
a
 Sex

b
 

No. 

PS
c
 

Loc 1 

(mm)
d
 

Loc 2 

(mm) 

Loc 3 

(mm) 

Loc 4 

(mm) 

        

SBT79-

029 

25 M 1 1.11    

SBT81-

005 

27.5 M 1 3.07    

SBT81-

015 

13 J 1 1.88    

SBT81-

056 

11.5 J 4 6.81 6.12 5.73 3.65 

SBT81-

137 

13.5 J 1 3.05    

SBT81-

295 

10.5 J 1 6.13    

SBT81-

334 

10 J 2 7.67 5.96   

SBT81-

524 

38 F 1 5.64    

SBT81-

559 

11.5 J 3 5.82 4.10 2.19  

SBT81-

617 

39 M 1 6.05    

        

 
a
 Age in years as estimated by traditional osteological analyses. 

b
 M signifies male, F signifies female, and J signifies unsexed juvenile (defined as age 15 or under). 

c
 Number of pathological striae of Retzius. 

d 
Location of pathological stria measured from intersection at the DEJ to the cervix in millimeters.
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Table 17. Absolute locations of pathological striae (PS) in the Gray Friars sample measured 

from the cervico-enamel junction 

ID Age
a
 Sex

b
 No. PS

c
 

Loc 1 

(mm)
d
 

Loc 2 

(mm) 
      

GP90-014 16 F 1 3.03  

GP90-029 7 J 2 7.47 6.23 

GP90-248 adult M 1 4.97  

GP90-262 21 M 1 5.23  

GP90-304 45 F 1 2.52  

GP90-365 10 J 1 3.3  
      

 
a
 Age in years as estimated by traditional osteological analyses. 

b
 M signifies male, F signifies female, and J signifies unsexed juvenile (defined as age 15 or under). 

c
 Number of pathological striae of Retzius. 

d 
Location of pathological stria measured from intersection at the dej to the cervix in millimeters.
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Appendix B 

 

Figures 

 

Figure 1. Drawing of the Black Friars monastery area excavations in Odense, DK from 

between 1972 and 1981. Stipled lines indicate monastery buildings, including the former 

church to the southwest. Skeletal individuals are denoted in a roughly square area around the 

former church, extending eastward. Printed after Becher, 1999. 
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Figure 2. Drawing of the excavated areas at the Gray Friars monastery area (in black) in 1982 

and 1990, including looted areas (stippled) and foundations (gray). 
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Figure 3. Photomontage of the labial mandibular canine enamel of SBT81-015, a 13 year old 

juvenile from the Black Friars monastery assemblage. The DEJ was divided in deciles, and 

intersecting SOR were counted in each decile to determine the total number of SOR. 
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Figure 4. Photomontage of labial mandibular canine enamel of SBT-81-137, a juvenile aged 

13.5 years (+/- 1.5 years). Cuspal striae are clearly seen, as are darkened striae of Retzius. 

None were associated with extreme rod disorganization at higher magnification. Image taken 

at magnification of 40x. 
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Figure 5. Sex and age of the skeletal individuals (n=455) making up the Gray Friars cemetery 

sample. 

 

 

 

No, Male (n= 227), 
227, 50% 

No, Female (n= 
127), 127, 28% 

No, Juvenile <15 
(n= 68), 68, 15% 

No, Unknown 
Adult (n= 33), 33, 

7% 
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Figure 6. Sex and age of the skeletal individuals (n=557) making up the Black Friars 

cemetery sample. 

 

No, Male (n=235), 
235, 42% 

No, Female 
(n=179), 179, 32% 

No, Juvenile <15 
(n=95), 95, 17% 

No, Adult 
unknown (n=48), 

48, 9% 
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Figure 7. Hypoplastic defects (lines and pits) on the labial enamel of the left mandibular 

canine. The angular attrition to the cusp precludes scoring of the first-formed lateral enamel 

for surface defects. 
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Figure 8. A thin section image of a pathological stria in at the leading edge of an enamel 

hypoplasia in GP90-304, a female age 45 years from the Gray Friars assemblage (square D). 
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Figure 9. Scanning electron micrograph (SEM) of a pathological stria in a thick section from 

SBT-81-056, a juvenile age 11.5 years (+/- .5 years). Rod disruption occurs at the bottom left 

of the image (cervical end) and runs to the top right (cuspal end). The rod on the right side of 

the image are disorganized and have a melted appearance. The image was taken at a 

magnification of 1000.  
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Figure 10. Growth rate in the mandibular canines chosen for the population model. The 

number of striae of Retzius per 10% increment is similar in each tooth. There is a general 

increase in the number of SOR as the cervix is reached, indicating that crown elongation is 

fastest at the beginning of development and slows as growth proceeds. 
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Figure 11. The timing of the development based on the population model. The number of 

months for development is generally increases as the cervix is reached. The dropoff at the 

90
th

 percentile reflects difficulty in seeing and counting SOR in the most cervical regions of 

the teeth. 
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Figure 12. Non-linear growth in the population model of crown development.  
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Figure 13. Distance function data for determining internal locations of external structures for 

the Black Friars sample. Note that the relationship between the internal and external positions 

of striae of Retzius is curvilinear. The regression equation that describes the relationship is y 

= -.353 + .970x - .027x
2
. 
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Figure 14. Distance function data for determining internal locations of external structures for 

the Gray Friars sample. Note that the relationship between the internal and external positions 

of striae of Retzius is curvilinear. The regression equation that describes the relationship is y 

= -.038 + .831x - .009x
2
. 
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Figure 15. Distance function data for determining internal locations of external structures for 

the both samples combined. Note that the relationship between the internal and external 

positions of striae of Retzius is curvilinear. The regression equation that describes the 

relationship is y = -.052 + .832x - .011x
2
. 
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Figure 16. Mean absolute location of pathological striae (PS) in millimeters in both cemetery 

samples. The Gray Friars sample mean is 4.68mm, while the Black Friars is 4.61mm. The 

combined mean is 4.63mm. 
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Figure 17. Mean relative locations of pathological striae (PS) by cemetery affiliation. The 

combined mean for both cemetery samples is 0.68. 
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Figure 18. Distribution of surface defects in the Black Friars cemetery sample. Surface 

defects are most prevalent in 60-70% DEJ crown height, and few to no defects were recorded 

before the 40
th

 percentile. 
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Figure 19. Distribution of surface defects in the Gray Friars cemetery sample. Surface defects 

are most prevalent in the 60-80% of DEJ crown height. Few to no defects were recorded in 

the cuspal 40
th

 percentile. 
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Figure 20. Prevalence of pathological striae (PS) in the Gray Friars sample in 10 percent 

increments along the DEJ. Prevalence peaks at the 50-60
th

 and 70-80
th

 percentiles. 
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Figure 21. Prevalence of pathological striae (PS) in the Black Friars sample in 10 percent 

increments along the DEJ. Prevalence peaks at the 50-60
th

 percentile. 
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